

Course Unit	Electronics			Field of study	Electronics and Instrumentation		
Bachelor in	Electrical and Computers Engineering			School	School of Technology and Management		
Academic Year	2023/2024	Year of study	1	Level	1-1	ECTS credits	6.0
Туре	Semestral	Semester	2	Code	9112-742-1203-00-23		
Workload (hours)	162	Contact hours		15 PL 30 T nd problem-solving; PL - Problem-	C - S - solving, project or laboratory; TC -	E - OT Fieldwork; S - Seminar; E - Place	- O - ment; OT - Tutorial; O - Other

Name(s) of lecturer(s)

Guido Szekir Berger, José Alexandre de Carvalho Gonçalves

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- Select, implement and analyse the limiting circuits widely used and based on diodes and operational amplifiers; Implement and analyse basic amplifier and commutation circuits based on transistors;
- Integrate and apply circuits widely used in analogue signal processing: addition, subtraction, integral and differential operations; amplification and attenuation; limitation and filtering;
 Utilize electronic equipment in the implementation, test and analysis of basic electronic circuits in the laboratory, with a good level of autonomy of practical skills;
 Integrate, extrapolate and apply the acquired knowledge in the implementation, analysis and diagnosis of electronic circuits widely used in practice.

Prerequisites

Before the course unit the learner is expected to be able to:

Analyse basic electric circuits.

Course contents

Fundamental analogue electronics: study of the main electronic components (diodes, transistors and operational amplifiers); implementation and analysis of electronic circuits of signal analogue conditioning (amplification, limitation, addiction, subtraction and filtering); implementation of basic switching circuits; study of typical applications; and development of practical laboratorial skills.

Course contents (extended version)

- 1. Study of the main electronic components:
- Diodes applications in basic amplifier circuits;
 Transistors applications in basic amplifier and switching circuits;
 Operational amplifiers application examples.
 Implementation and analysis of electronic circuits of signal analogue conditioning Amplification.
 Limitation

 - Addiction
 - Subtraction. Filtering.
- Implementation of basic switching circuits with transistors.
 Development of laboratorial skills through the implementation and analysis of typical applications.

Recommended reading

- Microelectronic Circuits, Adel S. Sedra, Kenneth C. Smith, 2004, Saunders College Publishing;
 Electronic Devices Discrete and Integrated, Stephen Fleeman, 1990, Prentice-Hall;
 Electronics Fundamentals. Circuits, Devices and Applications, Thomas L. Floyd, 2001, Prentice-Hall;
 Amplificadores Operacionais Fundamentos e Aplicações, Arthur F. de Gruiter, 1988, McGRAW-HILL;
 Operational Amplifiers and Linear Integrated Circuits, Robert F. Coughlin, Frederik F. Driscoll, 1998, Prentice-Hall.

Teaching and learning methods

Teaching Methods: lectures, problem-solving sessions and laboratory teaching with supervised simulation and experimental work; Learning Methods: notes from lectures; individual study and with other students to carry out works and solve problems; work in the laboratory.

Assessment methods

- Alternative 1 (Regular, Student Worker) (Final, Supplementary, Special)
 Laboratory Work 30%
 Final Written Exam 70%

Language of instruction

Portuguese, with additional English support for foreign students

Electroni	c valida	ation	
Cuido Szakir	Porgor	locó	Alexandre

Guido Szekir Berger, José Alexandre de Carvalho Gonçalves	José Augusto de Almeida Pinheiro Carvalho	José Luís Sousa de Magalhaes Lima	José Carlos Rufino Amaro
26-02-2024	26-02-2024	27-02-2024	02-03-2024