

Bachelor in Electrical and Computers Engineering School School of Technology and Management Academic Year 2021/2022 Year of study 1 Level 1-1 ECTS credits 6.0	Course Unit Electronics		Field of study Electronics and	Electronics and Instrumentation	
Academic Year 2021/2022 Year of study 1 Level 1-1 ECTS credits 6.0	Bachelor in Electrical and Com	uters Engineering	School School of Tech	School of Technology and Management	
	Academic Year 2021/2022	Year of study 1	Level 1-1	ECTS credits 6.0	
Type Semestral 2 Code 9112-742-1203-00-21	Type Semestral	Semester 2	Code 9112-742-1203	9112-742-1203-00-21	
Workload (hours) 162 Contact hours T 15 TP 15 PL 30 TC - S - E - OT - O - T - Lectures; TP - Lectures and problem-solving; PL - Problem-solving, project or laboratory; TC - Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Oth					

Name(s) of lecturer(s) José Alexandre de Carvalho Gonçalves, Antonio Eduardo Manso Pires, Joao Aderito Moura Moutinho

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- Select, implement and analyse the limiting circuits widely used and based on diodes and operational amplifiers; Implement and analyse basic amplifier and commutation circuits based on transistors;
- Integrate and apply circuits widely used in analogue signal processing: addition, subtraction, integral and differential operations; amplification and attenuation; limitation and filtering;
 Utilize electronic equipment in the implementation, test and analysis of basic electronic circuits in the laboratory, with a good level of autonomy of practical skills;
 Integrate, extrapolate and apply the acquired knowledge in the implementation, analysis and diagnosis of electronic circuits widely used in practice.

Prerequisites

Before the course unit the learner is expected to be able to: Analyse basic electric circuits.

Course contents

Fundamental analogue electronics: study of the main electronic components (diodes, transistors and operational amplifiers); implementation and analysis of electronic circuits of signal analogue conditioning (amplification, limitation, addiction, subtraction and filtering); implementation of basic switching circuits; study of typical applications; and development of practical laboratorial skills.

Course contents (extended version)

- 1. Study of the main electronic components:
- Study of the frain electronic components.
 Diodes applications in limiting and rectifier circuits;
 Transistors applications in basic amplifier and switching circuits;
 Operational amplifiers application examples.
 Implementation and analysis of electronic circuits of signal analogue conditioning Amplification.
 Limitation
 Addition

 - Addiction
 - Subtraction.
 - Filtering.
- Implementation of basic switching circuits with transistors.
 Development of laboratorial skills through the implementation and analysis of typical applications.

Recommended reading

- Microelectronic Circuits, Adel S. Sedra, Kenneth C. Smith, 2004, Saunders College Publishing;
 Electronic Devices Discrete and Integrated, Stephen Fleeman, 1990, Prentice-Hall;
 Electronics Fundamentals. Circuits, Devices and Applications, Thomas L. Floyd, 2001, Prentice-Hall;
 Amplificadores Operacionais Fundamentos e Aplicações, Arthur F. de Gruiter, 1988, McGRAW-HILL;
 Operational Amplifiers and Linear Integrated Circuits, Robert F. Coughlin, Frederik F. Driscoll, 1998, Prentice-Hall.

Teaching and learning methods

Teaching Methods: lectures, problem-solving sessions and laboratory teaching with supervised simulation and experimental work; Learning Methods: notes from lectures; individual study and with other students to carry out works and solve problems; work in the laboratory.

Assessment methods

- Alternative 1 (Regular, Student Worker) (Final, Supplementary, Special)
 Laboratory Work 30%
 Final Written Exam 70%

Language of instruction

Portuguese, with additional English support for foreign students

Electronic validation

LIECTIONIC VAIIGATION			
José Alexandre de Carvalho Gonçalves	José Luís Sousa de Magalhaes Lima	Orlando Manuel de Castro Ferreira Soares	Paulo Alexandre Vara Alves
28-02-2022	02-03-2022	21-03-2022	22-03-2022