

Course Unit	Digital Electronics			Field of study	Electronics and Instrumentation		
Bachelor in	Electrical and Computers Engineering			School	School of Technology and Management		
Academic Year	2022/2023	Year of study	1	Level	1-1	ECTS credits	6.0
Туре	Semestral	Semester	1	Code	9112-742-1105-00-22		
Workload (hours)	162	Contact hours		15 PL 30 To nd problem-solving; PL - Problem-		E - OT Fieldwork; S - Seminar; E - Place	- O - ment; OT - Tutorial; O - Other

Name(s) of lecturer(s) João Paulo Coelho, Luis Fernando Piardi

Learning outcomes and competences

- At the end of the course unit the learner is expected to be able to: 1. Simplify logical functions using both analytical and graphical methods; 2. Know the principal electrical characteristics of the TTL and CMOS familly;
- To design application specific combinatory digital circuits; Design counters for non-monotonic and non-consecutive sequences;

- Design contrers for non-monotonic and non-consecutive sequences,
 Design multiple input and multiple output sequential machines;
 Understand the structure and operation of electronic memories and digital programming devices;
 To gain the necessary skills on digital hardware description using VHDL;
 Synthesise simple logic systems, in a programmable digital device, from a VHDL circuit description.

Prerequisites

Before the course unit the learner is expected to be able to: Not appliable.

Course contents

Number Systems and Binary Codes. Logic Gates and Boolean Algebra. Logical Operations using electrical signals. Combinatory Integrated Circuits. Sequential Logic Circuits. Modelation and Simulation of Digital Systems with VHDL. Memories, SPLDS, CPLDS and FPGAS. Digital Systems Synthesis.

Course contents (extended version)

- 1. Number Systems and Binary Codes
- Conversion between the binary, octal and hexadecimal number system Signed Number Representation
- Arithmetic Operations
- Binary Codes
 Introduction to data transmission
- 2. Logic Gates and Boolean Algebra Boolean Variables
- Boolean Variables
 Elementary Logic Operations
 Canonical form of a logical expression
 Other logical operations
 Logical Gates and Logical diagrams
 The NAND and NOR functions as universal modelling operators
 Theorems and properties of Boole's Algebra
 Logical Expression Simplification
 Logical Integrated Circuits (IC)
 Logical Integrated Circuits (IC)
 Logical I Families
 Switching Dynamics
- Switching Dynamics
 Combinatory Integrated Circuits
 Coders and decoders
 Multiplexers and Demultiplexers

 - Logical function modellation using multiplexers Code converters
- Adders, subtractors and ALU's
 Sequential Logic Circuits
 Multivibrators

 - Latches and Flip-Flop's

 - Counters
 Digital counter design
 - Registries State machines
- Design of synchronous sequential circuits
 Modelation and Simulation of Digital Systems with VHDL
 Abstraction and Hierarchical Decomposition
 Hardware behaviour description

 - Basic VHDL concepts
 Concurrent Systems vs. Sequential Systems
 - Digital Systems Modelation

Recommended reading

- Digital Circuits and Microprocessors H. Taub, McGraw Hill, 1981
 Digital Electronics Tokheim, McGraw Hill, 2007
 Digital Design With Standard MSI & amp; LSI Thomas Blakesler, 1979
 Digital Integrated Circuits Thomas DeMassa, Zack Ciccone, 1995
 VHDL Programming by Example D. Perry, Mc Graw Hill, 2002

Teaching and learning methods

Most of the topics will be introduced, by the teacher, in presential classes. The concepts will be further investigated: - On presential sessions where the concepts are introduced and laboratory assignments are developed. - On non-presential time where the topics are further exploited by means of application exercises or group

Teaching and learning methods work assignments.	
Assessment methods 1. Alternative 1 - (Regular, Student Worker) (Final, Supplementary, Special) - Laboratory Work - 60% - Final Written Exam - 40% 2. Alternative 2 - (Regular, Student Worker) (Final, Supplementary, Special) - Final Written Exam - 100%	
Language of instruction	

Portuguese

Electronic validation				
João Paulo Coelho	José Luís Sousa de Magalhaes Lima	Orlando Manuel de Castro Ferreira Soares	Paulo Alexandre Vara Alves	
29-09-2022	16-10-2022	21-10-2022	07-11-2022	