

Course Unit	Operational Research II			Field of study	Quantitative Methods	
Bachelor in	Industrial Management and Engineering			School	School of Technology and Management	
Academic Year	2023/2024	Year of study	3	Level	1-3	ECTS credits 6.0
Туре	Semestral	Semester	1	Code	9104-754-3103-00-23	
Workload (hours)	162	Contact hours	T - Lectures; TP - Lectures a	60 PL - T nd problem-solving; PL - Problem-	C - S -	Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other

Name(s) of lecturer(s) Carla Alexandra Soares Geraldes

Learning outcomes and competences

- At the end of the course unit the learner is expected to be able to: 1. Identify and select the appropriate operational research techniques to solve existing problems in organizations 2. Critically analyze complex problems
- Develop simulations models, using a software package, to solve Industrial Management problems
 Interpret simulation results and draw conclusions from the simulation projects

Prerequisites

Before the course unit the learner is expected to be able to: The student should know the basic concepts of Operational Research.

Course contents

Formulation and solving techniques for Integer Programming problems. Markov processes. Queuing systems. Simulation.

Course contents (extended version)

- Integer Linear Programming

 The use of binary variables in Integer Programming.
 Some formulation examples in Integer Programming.
 General procedures used to solve Integer Programming problems.
 The Branch-and-Bound algorithm.
 The Cutting Planes algorithm.

 Markov Processes
- - Definition and basic concepts
 Transition matrix of a Markov chain
 Analysis of both ergodic and absorbing chains
- Generalizations
- Generalizations
 Queuing systems
 Characterisation of queuing processes
 The M/M/1 queuing system
 Queuing systems with more than one server
 Finite source models and systems with limited capacity
 Priority queuing models
 Simulation
 Simulation OR
- - Simulation in OR
 - Modelling of systems (manufacturing or services) using simulation
 Fundamental concepts (entities, queues, etc.)
 Development of models
 SIMIO simulation software

 - Validity and credibility of the simulation model
 Applications and analysis of simulation outputs

Recommended reading

- Notas de apoio (fornecidas pelo docente)
 Hillier, F. S., Lieberman, G. J., Introduction to Operations Research, 11th ed. McGraw-Hill, 2021 (ISBN: 9781259872990)
 Mourão, M. C., Pato, M. V., Pinto, L. S, Simões, O. A., Valente, J., Investigação Operacional Exercícios e Aplicações, 2. ª ed., Escolar Editora, 2019 (ISBN: 9781259872990) 9789725925560)

Teaching and learning methods

The theorical contents should be presented in theoretical-practical lectures, accompanied by the exercises solving. In non-presencial hours the topics should be consolidated through the exercises solving supported by computer tools. Some individual or group tutorial lectures could be scheduled if it would be necessary.

Assessment methods

- Distributed evaluation (Regular, Student Worker) (Final)

 Final Written Exam 50% (Only for students attending the classes.)
 Practical Work 50% (Only for students attending the classes. To be partially held during classes.)

 Final evaluation (Regular, Student Worker) (Supplementary, Special)

 Final Written Exam 100%

Language of instruction

Portuguese

This document is valid only if stamped in all pages

Electronic validation			
Carla Alexandra Soares Geraldes	José Mário Escudeiro de Aguiar	António Jorge da Silva Trindade Duarte	José Carlos Rufino Amaro
05-10-2023	07-10-2023	09-10-2023	10-10-2023