

Course Unit	Operational Research	ı		Field of study	Mathematics	
Bachelor in	Civil Engineering			School	School of Technology	and Management
Academic Year	2023/2024	Year of study	2	Level	1-2	ECTS credits 6.0
Туре	Semestral	Semester	2	Code	9089-322-2204-00-23	
Workload (hours)	162	Contact hours	T 30 TP		C - S -	E OT O O Fieldwork; S - Seminar, E - Placement; OT - Tutorial; O - Other
Name(s) of lecturer(s	Name(s) of lecturer(s) Carla Alexandra Soares Geraldes, José Mário Escudeiro de Aquiar					

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- At the end of the course unit the learner is expected to be able to:

 1. Formulate linear programming problems

 2. Know and apply the simplex algorithm

 3. Know and apply the duality theory

 4. Perform postoptimality and sensitivity analysis

 5. Know and apply the Dantzig algorithm to transport problems

 6. Know and apply the Hungarian and the bottleneck assignment problem algorithms to assignment problems

 7. Apply CPM and PERT methods to project planning

Prerequisites

Before the course unit the learner is expected to be able to: 1. Perform elementary operations of matrix algebra 2. Solve systems of linear equations

Course contents

Introduction to Operational Research. Linear programming models. Duality theory. Postoptimality and sensitivity analysis. The transportation and assignment problems. Project management.

Course contents (extended version)

- Introduction to Operational Research
 The origins of Operational Research
 Methodology and application domains
- Linear programming models
 Mathematical formulation of linear programming models
 - Graphical solution method
- Simplex method
- Economic interpretation of simplex
- Duality theory
 The essence of duality theory
- The essence of duality theory
 Primal-dual relationships
 Economic interpretation of duality
 The dual simplex method

 Dostoptimality and sensitivity analysis
 Changes in the objective function coefficients (cj)
 Throduction of new variables
 Introduction of new constraints

 Allowable range for the objective function coefficients

 Outpublic range for the objective function coefficients.
- Allowable range for the objective function coefficients
 Allowable range for the right-hand sides
 The transportation and assignment problems
 The transportation problem

- The Dantzig algorithm
 The assignment problem
 The Hungarian method
 Bottleneck assignent problem
 6. Project management
 Critical Path Method (CPM)
- - Critical path determination
 Programme Evaluation and Review Technique (PERT)

Recommended reading

- Geraldes, C. A. S. (2023). Operations Research Lectures Notes, ESTiG-IPB.
- 1. Geraides, C. A. S. (2023). Operations Research Lectures Notes, ESTIG-1PS.
 2. Hillier, F. S., Lieberman, G. J. (2021). Introduction to Operations Research (11th Edition). McGraw-Hill.
 3. Valente, J., Pinto, L. S., Pato, M. V., Mourão, M. C., Simões, O. A. (2019). Investigação Operacional, Exercícios e aplicações (2ª Edição). Escolar Editora.
 4. Pina Marques, M. (2010). Textos de Apoio de Investigação Operacional.
 5. Guerreiro, J., Magalhães, A., Ramalhete, M. (1995). Programação Linear, Vol. I e II (4ª edição). McGraw-Hill.

Teaching and learning methods

Contents will be covered with student attendance, in theoretical-practical classes, as well as the analysis and solution of exercises. Non-contact hours should be spent reviewing the lectured contents and solving practical exercises from the worksheets. Tutorial sessions might be held in non-contact hours, if necessary, individually or in groups.

Assessment methods

- 1. Alternative 1 (Portuguese classes) (Regular, Student Worker) (Final, Supplementary, Special) Final Written Exam 100%
- 2. Alternative 2 (Portuguese classes) (Regular, Student Worker) (Final, Supplementary)

This document is valid only if stamped in all pages.

Assessment methods

- Intermediate Written Test 50% (The midterm exam will be held during the classes.)
 Intermediate Written Test 50% (The Final exam will be held at the final exam's day.)
 3. OR-1 (Mobility students attending english classes) (Regular, Student Worker) (Final)
 Practical Work 40% (Held in classes for students who are attending in the current academic year)
 Presentations 10% (Presentation and discussion of the practical assignments.)
 Intermediate Written Test 50% (Held on the regular exam day.)
 4. OR-2 (Mobility students attending english classes) (Regular) (Supplementary, Special)
 Final Written Exam 100%
 5. OR-3 (Mobility students attending english classes) (Student Worker) (Final, Supplementary, Special)
 Final Written Exam 100%

Language of instruction

- Portuguese
 English

_					
	ectro	nic	1/2	143	non

Ziconomo randanom				
Carla Alexandra Soares Geraldes, José Mário Escudeiro de Aguiar	António Miguel Verdelho Paula	José Carlos Rufino Amaro		
04-03-2024	07-03-2024	09-03-2024		