

Course Unit	Structural Analysis I			Field of study	Mechanics of Materials and Structural Concrete	
Bachelor in	Civil Engineering			School	School of Technology and Management	
Academic Year	2022/2023	Year of study	2	Level	1-2	ECTS credits 6.0
Туре	Semestral	Semester	2	Code	9089-322-2201-00-22	
Workload (hours)	162	Contact hours				E - OT - O - Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other
			I - Lectures; IP - Lectures a	ind problem-solving; PL - Problem-	solving, project or laboratory; TC	- Fleidwork; S - Seminar; E - Placement; O1 - Tutorial; O - Otner

Name(s) of lecturer(s) Debora Rodrigues de Sousa Macanjo Ferreira

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- Study the principles of behavior of reticulate structures and apply the force method to calculate these structures Study and apply the influence line concept
- 3. Actions and combination of actions

Prerequisites

Before the course unit the learner is expected to be able to:
1. Analyse statically determinate continuous structures
2. Obtain the internal forces and diagrams

Course contents

Force method. Energy theorems: application on structural analysis. Influence lines. Symmetry simplification in hyperstatic structures. Actions and combination of

Course contents (extended version)

- 1. Chapter 1 Analysis of statically indeterminate structures

 - Plane trusses
 Continuous structures
- Mixed structures
- 2. Chapter 2 Energy Theorems
 - Theorem of virtual works applied to continuous and trusses structures
 Theorem of Clayperon
 Theorem of Betti and Maxwell's reciprocal theorem
- Theorem of Detti and Maxwell's reciprocal theorem
 Theorem of Castigliano
 Theorem of Menabrea
 3. Chapter 3 Calculation of displacements in isostatic structures using the theorem of virtual work
 Calculation of displacement in isostatic truss structures
 Calculation of displacement in isostatic continuous structures
 4. Chapter 4 Force Method

- Chapter 4 Force Method
 Calculation of hyperstatics trusses structures
 Calculation of statically indeterminate structures
 Calculation of displacements in statically indeterminate structures using theorem of virtual work
 Chapter 5 Influence lines
 Chapter 6 Actions and combination of actions

Recommended reading

- Sebenta "Teoria das Estruturas" -Prof. Paulo Vila Real
 Sebenta "Teoria das Estruturas" FEUP
 Sebenta "Exercicios resolvidos de Estruturas I" Prof. Joaquim Barros e Salvador Dias, Universidade do Minho
 "Structural analysis" Alexander Chapes, Prentice Hall, International Edition
- 5. Apontamento de Estruturas I Débora Macanjo Ferreira

Teaching and learning methods

Theoretical-practical classes: Presentation and discussion of all contents in theoretical classes along with simple ilustration problems. In theoretical-practical classes a set of application associated to theoretical issues is proposed and discussed. Four complementary individual exercises will be proposed and evaluated.

Assessment methods

- Alternative 1 (Regular, Student Worker) (Final)
 Intermediate Written Test 30%
- Intermediate Written Test 30%
 Intermediate Written Test 20%
 Final Written Exam 50%
 Alternative 2 (Regular, Student Worker) (Supplementary, Special)
 Final Written Exam 100%

Language of instruction

Portuguese, with additional English support for foreign students.

Flectronic validation

Licotroffic validation					
Debora Rodrigues de Sousa Macanjo Ferreira	Luís Manuel Ribeiro Mesquita	António Miguel Verdelho Paula	José Carlos Rufino Amaro		
17-02-2023	17-02-2023	07-03-2023	10-03-2023		