

Unidade Curricular Resistência dos Materiais I				Área Científica	Mecânica dos Materiais e Betão Estrutural	
Licenciatura em Engenharia Civil			Escola	Escola Superior de Tecnologia e de Gestão de Bragança		
Ano Letivo	2021/2022	Ano Curricular	1	Nível	1-1	Créditos ECTS 6.0
Tipo	Semestral	Semestre	2	Código	9089-322-1204-00-21	
Horas totais de traba	alho 162	Horas de Contacto				E OT O O O
			1 - Elisillo Teolico, TP - 1	eorico Franco, FE - Franco e Labo	ratoriai, 10 - Trabanio de Campo	, 3 - Seminano, E - Estagio, OT - Orientação Tutorica, O - Outra
Nome(s) do(s) docente(s) Ioão Carlos Almendra Roque						

Resultados da aprendizagem e competências

No fim da unidade curricular o aluno deve ser capaz de:

- 1. Compreender os mecanismos que regem a mecânica dos sólidos deformáveis sob ações exteriores. Conhecer os conceitos fundamentais, os princípios e as hipóteses subjacentes à Teoria da Elasticidade.
- Aplicar metodologias de análise, gráficas e/ou analíticas, na resolução de problemas de elasticidade.
 Caracterizar e interpretar o estado de tensão e o estado de deformação num ponto. Conhecer os fundamentos da instrumentação e da medição experimental de
- deformações.

 4. Relacionar o estado de tensão com o correspondente estado de deformação. Conhecer a lei constitutiva de Hooke e outros modelos reológicos ideais.

 5. Conhecer curvas de tensão-deformação uniaxial típicas de materiais correntes (aço e betão)

 6. Analisar estruturas articuladas de barras (homogéneas e heterogéneas) sob ação de esforço axial.

 7. Dimensionar peças lineares sujeitas a esforço axial ou a flexão pura.

Pré-requisitos

- Antes da unidade curricular o aluno deve ser capaz de:
 1. Aplicar os princípios fundamentais da Física
 2. Aplicar conceitos da estática dos corpos rígidos
 3. Aplicar o cálculo vetorial, diferencial, integral e matricial
- 4. Aplicar conhecimentos de álgebra linear e geometria analítica.

Conteúdo da unidade curricular

Introdução à mecânica dos meios contínuos. Hipóteses e conceitos fundamentais. Teoria das tensões. Teoria das extensões. Relações constitutivas. Esforço axial em peças lineares. Flexão em peças lineares.

Conteúdo da unidade curricular (versão detalhada)

- Cap. 1 Introdução

 Organização da disciplina.
 Pressupostos da Mecânica dos Meios Contínuos.
 Revisões de mecânica vetorial e de cálculo matricial.

 Cap. 2 Teoria das tensões

 Conceito de tensão. Tensão numa faceta. Componentes normal e tangencial.
 Caraterização do estado de tensão num ponto. Tensor das tensões.
 Equilibrio na fronteira. Tensão numa direção arbitrária.

 - Equilibrio na fronteira. I ensao numa direçao arbitraria.
 Equilibrio indefinido
 Transposição do sistema de eixos. Tensões e direções principais. Circunferências de Mohr
 Componentes isotrópica e de desvio.
 Sobreposição de estados de tensão
 Estados particulares de tensão num ponto
 Estado de tensão num corpo. Principio de Saint-Venant.
- Estado de tensão num corpo. Princípio de Saint-Venant.
 3. Cap. 3 Teoria das Extensões
 Mov. corpo rígido e deformação. Deformação homogénea.
 Conceito de extensão linear e angular.
 Estado de deformação num ponto. Tensor das extensões. Hipóteses da elasticidade linear.
 Extensões e direções principais de deformação. Circunferências de Mohr.
 Componentes isotrópica e distorcional de deformação.
 Deformação pura e rotação de corpo rígido.
 Noções de extensometria e medição de deformações.
 4. Cap. 4 Relações Constitutivas
 Introdução
 Comportamento material em tração/compressão uniaxial. Curva de tensão-deformação.
 Deformações elásticas, plásticas e viscosas. Materiais dúcteis e frágeis.
 Modelos do comportamento reológico.
 Lei de Hooke. Módulo de elasticidade longitudinal. Coeficiente de Poisson. Módulo de distorção.
 Lei de Hooke generalizada. Princípio da sobreposição dos efeitos.
 Relações constitutivas tensão-deformação.
 Casos particulares de deformação. Estado plano de deformação.
- Relaçoes constitutivas tensao-deformação.
 Casos particulares de deformação. Estado plano de deformação .
 5. Cap. 5 Esforço Axial em Peças Lineares
 Introdução à teoria das peças lineares. Pressupostos.
 Esforço axial em peças lineares.
 Peças de secção homogénea. Peças de secção heterogénea.
 Efeito da variação da temperatura.
 Noção de pré-esforço e análise dos seus efeitos.
 Critérios de dimensionamento e verificação da segurança.
 Análise de estruturas articuladas sujeitas a esforço axial

- Criterios de dimensionamento e verificação da segurança.
 Análise de estruturas articuladas sujeitas a esforço axial.
 Cap. 6 Flexão em Peças Lineares
 Pressupostos e conceitos fundamentais.
 Flexão Pura. Flexão Pura Reta. Flexão Pura Desviada.
 Distribuição de tensões axiais de flexão.
 Critérios de dimensionamento e verificação da segurança.
 Análise elasto-plástica de secções.

Bibliografia recomendada

1. Mecânica e Resistência dos Materiais. Vitor Dias da Silva, Ediliber Editora

Este documento só tem validade académica depois de autenticado, em todas as suas folhas, com o selo a óleo da Instituição.

Bibliografia recomendada

- Mecânica dos Materiais, Ferdinand P. Beer, E. Russell Johnston Jr, John T. DeWolf.
 Mecânica dos Sólidos e Resistência dos Materiais, J. F. Silva Gomes, Edições INEGI.
 Elementos de apoio fornecidos pelo docente: Guia das aulas teóricas e Caderno de exercícios práticos.

Métodos de ensino e de aprendizagem

Período presencial (60 horas): Aulas teórico-práticas expositivas. Análise e discussão dos conteúdos expostos. Aulas práticas de exercitação de conceitos e de métodos de análise através da resolução de problemas práticos. Período não-presencial (102 horas): será fornecido um guia de estudo, material de apoio e usada a plataforma de e-learning para promover a auto-aprendizagem guiada pelo docente.

Alternativas de avaliação

- Alternativa 1: (Ordinário, Trabalhador) (Final)

 Prova Intercalar Escrita 50% (Prova teórico-prática 1 (10 valores): Cap. 1 a Cap. 4)
 Exame Final Escrito 50% (Prova teórico-prática 2 (10 valores): Cap. 5 e Cap. 6)

 Alternativa 2: (Ordinário, Trabalhador) (Recurso, Especial)

 Exame Final Escrito 100% (Prova teórico-prática (20 valores): Cap. 1 a Cap. 6)

Língua em que é ministrada

Português, com apoio em inglês para alunos estrangeiros

Validação Eletrónica

João Carlos Almendra Roque	Luís Manuel Ribeiro Mesquita	António Miguel Verdelho Paula	Paulo Alexandre Vara Alves
08-03-2022	09-03-2022	14-03-2022	17-03-2022