

Course Unit	urse Unit Mathematics			Field of study	Mathematics	
Bachelor in	Accounting			School	School of Technology and Management	
Academic Year	2023/2024	Year of study	1	Level	1-1	ECTS credits 6.0
Туре	Semestral	Semester	1	Code	9056-514-1105-00-23	
Workload (hours)	162	Contact hours			C - S - solving, project or laboratory; TC -	Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other

Name(s) of lecturer(s)

Carla Sofia Veiga Fernandes

- Learning outcomes and competences
- At the end of the course unit the learner is expected to be able to:
- Know and apply rules of matricial calculus Know the concept of determinant of square matrices and be able to apply this appropriately

- Solve linear systems using Cramer's rule and Gauss method
 Solve linear systems using Cramer's rule and Gauss method
 Recognize aspects of function behaviour, by identifying properties, also using the differential calculation
 Find indefinite integral. Calculate a definite integral and understand its geometrical meaning
 Understand the definition of a real function of 2 variables and use partial differentiation for solving optimization problems with and without constraints 6
- 7. Solve real-world math problems by choosing an appropriate strategy

Prerequisites

Before the course unit the learner is expected to be able to: Know and to apply mathematical concepts taught during high school.

Course contents

Chapter1. Linear algebra; Chapter 2. Calculus in one variable; Chapter 3. Calculus with several variables

Course contents (extended version)

This document is valid only if stamped in all pages

- 1. Linear Algebra Concept of matrix; matrix operations
 - Determinant of a square matrix
- Determinant of a square matrix
 Systems of linear equations: matricial form
 Resolution of systems through the Cramer's rule and Gauss elimination method
 Calculus In One Real Variable
 Definition of real function of a real variable, his domain and codomain
 Exponential and logarithmic functions
 Limit and continuity of a function at a point and on an interval
 The derivatives
- The derivative of a function at a point, derivative function and rules of derivation
 Higher order derivatives
 Optimization problems
 The notion of indefinite integral and immediate integrals
 Definite integral: definition, fundamental theorem of calculus and properties of definite integral
 Finding areas by integration
 Calculus With Several Variables
 Definition of functions of several variables
 Partial derivatives and higher order partial derivatives
 Otimization problems with and without constraints

Recommended reading

- Gilbert Strang: Linear Algebra and its Applications; Harcourt Brace Jovanovich College Publishers, 1986
 Luís Magalhães: Algebra Linear como Introdução à Matemática Aplicada; Texto Editora, 1998
 Laurence Hoffmann, Gerald Bradley Calculus For Business and Social and Life Sciences, 5^a Ed., McGrawHill, 1992
 J. C. Silva: Principios da Análise Matemática Aplicada; McGraw-Hill, 1994
 João Paulo Santos: Cálculo numa Variável Real; IST Press, 2012

Teaching and learning methods

The topics of the course unit will be introduced and explored during the lessons - resolution of exercises will complement the theoretical concepts. Outside the classes, the students must solve practical exercises and, whenever they consider useful, they should use computer and/or calculator.

Assessment methods

- Alternative 1 (Regular, Student Worker) (Final)

 Intermediate Written Test 35% (First partial test assesses the acquired skills in Chapter 1 and is held during classes.)
 Intermediate Written Test 45% (Second partial test assesses the acquired skills in Chapter 2 and is held during classes.)
 Intermediate Written Test 20% (Third partial test assesses the acquired skills in Chapter 2 and is held during classes.)
 Intermediate Written Test 20% (Third partial test assesses the acquired skills in Chapter 3 and is held at the final exam's day.)

 Alternative 2 (Regular, Student Worker) (Supplementary)

 Intermediate Written Test 100% (Reproved student can repeat 1 or 2 of the partial tests referred on the Alternative 1.)
- Alternative 3 (Regular, Student Worker) (Supplementary, Special)
 Final Written Exam 100%

Language of instruction

Portuguese, with additional English support for foreign students.

Electronic validation			
Carla Sofia Veiga Fernandes	Florbela Alexandra Pires Fernandes	Oliva Maria Dourado Martins	José Carlos Rufino Amaro
04-10-2023	11-10-2023	11-10-2023	20-10-2023