

| Course Unit      | Statistics for Business           |               |                               | Field of study                    | Mathematics                         |                                     |                                 |
|------------------|-----------------------------------|---------------|-------------------------------|-----------------------------------|-------------------------------------|-------------------------------------|---------------------------------|
| Bachelor in      | International Business Management |               |                               | School                            | School of Technology and Management |                                     |                                 |
| Academic Year    | 2022/2023                         | Year of study | 1                             | Level                             | 1-1                                 | ECTS credits                        | 6.0                             |
| Туре             | Semestral                         | Semester      | 2                             | Code                              | 8487-711-1202-00-22                 |                                     |                                 |
| Workload (hours) | 162                               | Contact hours |                               |                                   | c - s -                             |                                     | 10 0 -                          |
|                  |                                   |               | I - Lectures; TP - Lectures a | nd problem-solving; PL - Problem- | solving, project or laboratory; TC  | - Fieldwork; S - Seminar; E - Place | ement; OI - Tutorial; O - Other |

Name(s) of lecturer(s)

António Jorge da Silva Trindade Duarte, José Mário Escudeiro de Aguiar

Learning outcomes and competences

- At the end of the course unit the learner is expected to be able to: 1. Understand the probability concept and its axioms and compute simple probability using the basic probability and combinatorics laws; 2. Understand the basic concepts related to random variables and perform simple calculations based on them; 3. Know and to manipulate, at a basic level, the most common random variables and use them to model simple situations; 4. Apply and to interpret the most common ways of representing and synthesize the information in a dataset; 5. Compute point and interval estimates for the most common population parameters; 6. Understand and to apply the hypothesis test methodology on the most common population parameters.

### Prerequisites

Before the course unit the learner is expected to be able to:

Manipulate basic mathematical concepts

## Course contents

Introduction. Basic Probability Theory. Random Variables and Probability Distributions. Joint Probability Distributions. Characterization of Some Discrete Distributions. Characterization of Some Continuous Distributions. Descriptive Statistics. Random Sampling and Sampling Distributions. Point Estimation. Interval Estimation. Hypothesis Tests.

### Course contents (extended version)

1. Introduction

This document is valid only if stamped in all pages

- The statistical object
  Descriptive statistics and statistical inference
  Populations and samples
  Basic Probability Theory
  Random experiments, sampling spaces and events
  Combinatorics
  The probability concept

  - The probability concept
     Conditional probability
     Independent events
- Bayes theorem
   Random Variables and Probability Distributions
   Definition of random variable

  - Discrete variables: probability function and cumulative probability function
     Continuous variables: probability density function and cumulative density function
     Distribution parameters
     Variable transformations: linear and non linear transformations
- Joint Probability Distributions
   Definition of joint distributions
   Marginal distributions
   Conditional distributions

  - Independence Covariance and correlation
- Variable combinations
   Variable combinations
   Calculation of a combination expected value and variance: linear and non linear combinations
   Characterization of Some Discrete Distributions
   Binomial distribution

- Negative Binomial distribution
   Hypergeometric distribution
- Relations between the Binomial and the Hypergeometric distributions Poisson distribution
- Relations between the Poisson and the Binomial and Hypergeometric distributions
   Characterization of Some Continuous Distributions

- Uniform distribution
   Exponential distribution
- Relations between the Poisson and Exponential distributions Normal distribution

- rvorma distribution
   Standard Normal distribution
   Linear combination of independent Normal variables
   Relations between the Normal and Binomial distributions
   Chi-squared, Student's t and F distributions
   Descriptive Statistics
   Data classification
   Qualitative and quantitative data

  - Qualitative and quantitative data Univariate samples characterization Location statistics (average, median and mode) e dispersion (variance) Skew and Kurtosis coefficients
- Skew and Kurtosis coefficients
  Bivariate samples characterization
  Calculation of a linear relation coefficients using least squares
  Correlation and determination coefficients
  Random Sampling and Sampling Distributions
  Distribution of sample mean
  Expected value and variance for sample mean
  Sample mean distribution shape for Normal populations
  Central limit theorem
  Imit theorem

- Implications on sampling distributions

### Course contents (extended version)

- Random sample generations using Monte Carlo method
   Generation of random U(0, 1) samples
   Generation of random samples for discrete and for continuous populations
- 9. Point Estimation

  - Estimators and estimates
     Desirable estimator properties: unbiased, efficient and consistent
- Estimation methods: maximum likelihood and least squares
   Estimator selection
   Interval Estimation
- - Interval Estimation Confidence interval specification Confidence interval specification Confidence intervals for the continuous populations mean Confidence intervals for a Normal population variance Confidence intervals for a Normal population variance Confidence intervals for the mean difference between two continuous populations Confidence intervals for the proportion difference with large samples Confidence intervals for the variance ratio of Normal populations Sample size determination

- Confidence intervals for the varia Sample size determination
   Hypothesis Tests
   Basic hypothesis test procedure
   Hypothesis definition
   Test statistic characterization
   Designer rule definition

  - Decision rule definition
     Type I error and significance
     Calculation of test statistics and decision making
  - P-value

  - Type II error and statistical power
    Relations between hypothesis tests and confidence intervals
    Reference to the most common tests

# Recommended reading

1. Diez, D., Cetinkaya-Rundel, M., & Barr, C. (2019). OpenIntro Statistics (4th ed. ). OpenIntro. Retrieved from http: //www. openintro. org/redirect. php? go=os&referrer=os4\_pdf 2. Venables, B., Smith , D. M., & R Core Team. (2019). An Introduction to R (3. 6. 1 ed. ). R Core Team. Retrieved from https: //cran. r-project. org/ 3. Kokosha, S. (2015). Introductory Statistics (2nd ed. ). New York: W. H. Freeman and Company.

#### Teaching and learning methods

In the lectures, there will be content presentations and analysis of small practical examples. In the tutorials students will solve, under supervision, practical exercises. Non contact hours should be spent reviewing the lectured contents and solving practical exercises from the worksheets.

## Assessment methods

- Alternative 1 (Regular, Student Worker) (Final, Supplementary, Special)

   Final Written Exam 100%

   Alternative 2 (Regular, Student Worker) (Final)

   Intermediate Written Test 25% (To take place on week 7 or 8.)
   Final Written Exam 25%
   Practical Work 40%
   Portfolio 10% (Classroom questions and tasks.)

## Language of instruction

### English

| Electronic validation                                                     |                                              |                            |                          |  |
|---------------------------------------------------------------------------|----------------------------------------------|----------------------------|--------------------------|--|
| António Jorge da Silva Trindade Duarte,<br>José Mário Escudeiro de Aguiar | Maria Clara Rodrigues Bento Vaz<br>Fernandes | Nuno Filipe Lopes Moutinho | José Carlos Rufino Amaro |  |
| 05-05-2023                                                                | 05-05-2023                                   | 07-05-2023                 | 08-05-2023               |  |