

Course Unit Thermal Solar Systems			Field of study	Energy		
Master in	er in Renewable Energy and Energetic Efficiency			School	School of Technology and Management	
Academic Year	2023/2024	Year of study	1	Level	2-1	ECTS credits 6.0
Туре	Semestral	Semester	2	Code	6793-475-1205-00-23	
Workload (hours)	162	Contact hours		30 PL 30 T nd problem-solving; PL - Problem-		E · OT · O ·

Name(s) of lecturer(s)

João da Rocha e Silva, Luis Miguel Silva Correia

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

Calculate and Integrate different solar-thermal technologies in buildings HVAC systems.
 Intervene over architecture projects in order to improve energy performance.

Prerequisites

Before the course unit the learner is expected to be able to: Notions of thermodynamiocs, heat transfer and fluid mechanics

Course contents

Active and passive solar thermal systems

Course contents (extended version)

- 1. Introduction

 - Energy conversion
 Forms of energy
 Solar energy conversion

 - Solar radiation
 Bioclimatic architecture
- Introduction to solar systems -Composition -Capture -Storage -Energy distribution
- 2. Passive solar systems General principles. Summer and winter operations Bioclimatic strategies Theorem isolativity in buildings

 - Thermal isolation in buildings - Passive heating systems

 - Direct gain
 Indirect gain
 Indirect gain
 Indirect gain
 Thermal insulation wall-Massive wall
 -Trombe wall
 -Water column,
 Thermal storage roof
 Constant gain
 Thermal storage roof
- Indirect gain Inermal insulation wain-water volume, Their Separate gain greenhouses
 Passive cooling systems -Ventilation -Evaporative and radiative cooling -Soil cooling
 Dimensioning passive solar buildings
 Active solar systems
 Types of flat collectors -water -air
 Vacuum tubes
 Concentrating collectors -low concentration -average -high

 - Concentrating collectors -low concentration -average -high
 Systems of forced circulation
 Thermosiphon circulation systems

 - Theffiosiphion Criculation systems
 Energy storage
 Domestic water heating
 System description -Heat charge -"f-chart" method -Parameters that conditioned the system
 Heating water in industrial processes -pool heating -Indoor heating -Other applications

Recommended reading

- "Thermal Analysis and Design of Passive Solar Buildings", Athienitis, A. K., Santamouris, M., Earthscan Publications Ltd, 2002
 "En Detail: Arquitecture Solar", C. Schittich (Editor), Princeton Arch Staff, 2005
 "Solar Architecture: The Direct Gain Approach (Energy Learning Systems Book)", T. E. Johnson, MacGraw–Hill, 1981
 "Solar Technologies for Buildings", U. Eicker, Wiley, ISBN 047148637X, 2003

Teaching and learning methods

-Theoretical classes - Exposure of concepts - presentation and discussion over examples -Practical classes - Application exercices

Assessment methods

- 1. Alternative 1 (Regular, Student Worker) (Final) Practical Work 70% Work Discussion 30%

- Alternative 2 (Regular, Student Worker) (Supplementary, Special)
 Final Written Exam 100%

Language of instruction

Portuguese

Electronic validation			
João da Rocha e Silva, Luis Miguel Silva Correia	João Eduardo Pinto Castro Ribeiro	Ângela Paula Barbosa da Silva Ferreira	José Carlos Rufino Amaro
18-03-2024	18-03-2024	18-03-2024	24-03-2024