

Course Unit	Biomass Systems			Field of study	Energy	
Master in	Renewable Energy ar	d Energetic Efficiency		School	School of Technology and Management	
Academic Year	2023/2024	Year of study	1	Level	2-1	ECTS credits 6.0
Туре	Semestral	Semester	2	Code	6793-475-1201-00-23	
Workload (hours)	162	Contact hours			C - S - solving, project or laboratory; TC	E - OT - O - Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other

Name(s) of lecturer(s)

Arlindo Castro Ferreira Almeida, Hélder Teixeira Gomes, João Paulo Miranda Castro, Manuel Ângelo Rosa Rodrigues

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- Recognize the biomass strategic and economic importance as an energetic resource.
 Recognize the production systems of biomass for energy.
 Identify the most important energetic products from biomass.
 Identify the potential of the different sources of biomass for the valorisation of its energetic content.
 Recognize the various synthesis processes of liquid biofuels and select the most adequate for the available biomass sources.

Prerequisites

Before the course unit the learner is expected to be able to: Understand Thermodynamics and fundamentals of Chemistry

Course contents

1. Basic elements of biomass accumulation 2. Biomass production systems 3. Harvesting, transportation and storage 4. Conversion of solid biomass 5. Combustible gases from biomass 6. Fuel production from biomass 7. Advantages and environmental impact

Course contents (extended version)

- 1. Basic elements of biomass accumulation
- Biomass concept; Biomass as a solar energy store; EU Biomass Action Plan
- 2. Biomass production systems
- Biomass production systems

 Biomass from animal, forestry and agriculture exploitation systems residual products
 Dedicated energy crops forestry and agriculture, Environmental Aspects. Crop Management. Microalgal.

 Harvesting, transportation and storage

 Herbaceous and ligneous material; Harvesting material; Drying methods; Compacting process

 Conversion of solid biomass

 Waste processing: balax explicits; bast and electricity generation from biomass

- Waste processing; bales, pellets; heat and electricity generation from biomass
 Combustible gases from biomass

- Combustible gases from biomass

 Fermentation, biogas

 Fuel production from biomass

 Introduction. Biofuel history. First, second and third biofuel generations.
 Biomass gasification and Syn-Gas applications. Gasification chemistry.
 Bio-Oil production. Bio-Oils by fast pyrolysis. Bio-Oils by liquefaction. Bio-Oil chemistry.
 Triglyceride conversion. Transesterification. Pyrolysis and zeolite upgrading. Glycerol utilization.
 Sugar conversion into fuels. Ethanol production. Biological hydrogen and methane production.

 Adventages and environmental impact

7. Advantages and environmental impact

Recommended reading

- 1. Drapcho, C., Nghiem, J., Walker, T.; Biofuels Engineering Process Technology, McGraw-Hill, New York (2008). 2. Huber, G. W., Iborra, S., Corma, A.; Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chem. Rev., 106 (9), 2006, 4044-4098. Camps, M., Marcos, F.; Los Biocombustibles, Ediciones Mundi-Prensa, Madrid (2008).
- Tolosana, Eduardo; Manual técnico para el aprovechamiento y elaboración de biomasa forestal, Edic. Mundi-Prensa, Madrid (2009).
 Damien, Alain; La Biomasa: fundamentos, tecnologías y aplicaciones, Edic. Mundi-Prensa, Madrid (2009).

Teaching and learning methods

Theory: explanation of the theoretical concepts. Examples and case studies: presentation, discussion and analysis. Practice: Lectures to solve practical problems. Visits and applied field work

Assessment methods

- Alternative 1 (Regular, Student Worker) (Final, Supplementary)

 Practical Work 50% (Practical component (mini tests, laboratory work, research or others))
 Final Written Exam 50% (Final exam accounts for 50% of the final grade)

 Alternative 2 (Student Worker) (Final, Supplementary, Special)

 Final Written Exam 100% (Exam includes the practical component)

 Alternative 3 (Regular) (Special)

 Final Written Exam 100% (Exam includes the practical component)

Language of instruction

Portuguese, with additional English support for foreign students

Electronic validation				
Arlindo Castro Ferreira Almeida, Hélder Teixeira Gomes, João Paulo Miranda Castro, Manuel Ángelo Rosa Rodrigues	Simão Pedro de Almeida P	inho	Ângela Paula Barbosa da Silva Ferreira	José Carlos Rufino Amaro
20-03-2024	23-03-2024		23-03-2024	24-03-2024