

Course Unit	t Bioprocess Engineering			Field of study	Biotechnology	
Master in	Chemical Engineering			School	School of Technology and Management	
Academic Year	2023/2024	Year of study	2	Level	2-2	ECTS credits 6.0
Туре	Semestral	Semester	1	Code	6362-756-2102-00-23	
Workload (hours)	162	Contact hours			C - S - solving, project or laboratory; TC	Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other

Name(s) of lecturer(s) Maria Olga de Amorim Sá Ferreira, Pedro Jorge Louro Crugeira

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

Know the different cell growth kinetics and enzyme kinetics.
 Design homogeneous and heterogeneous bio-reactors.
 Distinguish the different steps from a typical separation process in biotechnology and the unit operations typically used in each step.

Prerequisites

Before the course unit the learner is expected to be able to: know the fundamentals of reaction engineering, separation processes and transfer phenomena.

Course contents

Enzymes; Cell growth; Bioreactors; Bioseparations.

Course contents (extended version)

1. Enzymes

- Mechanisms of enzyme kinetics, deactivation and inhibition.
 Effects of physicochemical properties of the media on the enzymatic activity.
 Enzyme immobilization methods such as cross-linking, microencapsulation and occlusion.
 Effects of enzyme immobilization on the reaction rate.

- Effects of efficience of the product formation.
 Different product formation kinetics and their relationship with energy metabolism.
- Biological reactors such as chemostat, batch reactor, fed-batch and air-lift. 4. Bioseparations
 - Main steps in a classical bioseparation process departing from a given fermentation broth.
 Filtration in the presence of compressible and incompressible filter cakes.
 Effect of the shape of the cells on the performance of filtrations.

 - Filtration with centrifugation.
 Liquid-liquid extraction using aqueous biphasic systems.

 - Electrodialysis.

 - Isoelectric focusing.
 Cell disruption processes.

Recommended reading

- 1. P. A. Belter, E. L. Cussler, W. Hu, Bioseparations Downstream Processing for Biotechnology, John Wiley & Sons, 1988. 2. P. M Doran, Bioprocess Engineering Principles, 2nd edition, CRC Press, 2013.

Teaching and learning methods

Bioprocess design concepts and techniques will be covered in theoretical classes, with resolution of application exercises in theoretical-practical classes. The following topics will be covered in laboratory classes: yeast filtration, hydrodynamics in bioreactors, enzyme kinetics, mass transfer in cell cultures and analysis methods

Assessment methods

- 1. Alternative 1 (Regular, Student Worker) (Final, Supplementary, Special) Final Written Exam 50%
- Final Written Exam 30%
 Reports and Guides 40% (Five reports about the laboratory work.)
 Development Topics 10% (Seminar on a bioprocess presented by students in the penultimate week of classes.)
 2. Alternative 2 (Student Worker) (Final, Supplementary, Special)
 Final Written Exam 100% (Final global exam.)

Language of instruction	
English	

English

Electronic validation			
Maria Olga de Amorim Sá Ferreira	Hélder Teixeira Gomes	Simão Pedro de Almeida Pinho	José Carlos Rufino Amaro
04-10-2023	25-10-2023	25-10-2023	31-10-2023