

Course Unit	Course Unit Advanced Separation Processes			Field of study	Chemical Enginnering Processes	
Master in	er in Chemical Engineering			School	School of Technology and Management	
Academic Year	2023/2024	Year of study	1	Level	2-1	ECTS credits 6.0
Туре	Semestral	Semester	1	Code	6362-756-1105-00-23	
Workload (hours)	162	Contact hours			C - S - solving, project or laboratory; TC -	E · OT · O ·

Name(s) of lecturer(s)

José António Correia Silva

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- Analyze and design multicomponent distillation columns by approximate methods: Fenske-Underwood-Gilliland Method (FUG)
 Analyze and design multicomponent distillation using free commercial software ChemSep
 Understand enhanced distillation: extractive distillation, azeotropic distillation, reactive distillation
 Analyze and design separation processes with membranes
 Analyse and design separation processes by adsorption, ion-exchange and chromatography

Prerequisites

Before the course unit the learner is expected to be able to: Dominate basic concepts of thermodynamics, heat and mass transfer

Course contents

Multicomponent distillation (FUG method). Application of ChemSep software for multicomponent distillation. Enhanced distillation and supercritical extraction. Membrane separations. Adsorption processes

Course contents (extended version)

- 1. Multicomponent distillation
- Multicomponent distillation

 Fenske-Underwood–Gilliland Method

 Application of software ChemSep in the project of multicomponent distillation
 Enhanced Distillation and Supercritical Extraction

 Use of Triangular Graphs
 Extractive Distillation
 Salt distillation

 - PSA distillation

 - Azeotropic distillation Reactive distillation
- Membrane Separations
 Types of membranes
 Membrane modules

 - Gas Separation Dialysis
 - Reverse Osmosis
- Separation by adsorption, ion exchange and chromatography Adsorbents
 - Adsorption equilibrium

 - Kinetics of sorption
 Adsoprtive systems: PSA, TSA and SMB

Recommended reading

- 1. J. D. Seader, Ernest J. Henley, D. Keith Rope; Separation Process Principles: With Applications Using Process Simulators, John Wiley & Sons, 4th Edition, 2016.
- ISBN: 978-1-119-14129-7 2. Christie John Geankoplis; Transport Processes and Separation Process Principles (Includes Unit Operations); Pearson, Fourth Edition 2013. ISBN-13: 978-
- 0131013674 3. Philip C. Wankat; Separation Process Engineering: Includes Mass Transfer Analysis; Pearson, Fourth Edition, 2016. ISBN 13: 9780133443653

Teaching and learning methods

Theory: Description of theoretical concepts Practice: Discussion of course materials and homework assignments

Assessment methods

- Alternative 1 (Regular, Student Worker) (Final)

 Intermediate Written Test 30% (Week 5)
 Intermediate Written Test 30% (Week 10)
 Intermediate Written Test 40% (Week 15)

 Alternative 2 (Regular, Student Worker) (Final, Supplementary, Special)

 Final Written Exam 100%

Language of instruction

English

Electronic validation			
José António Correia Silva	Hélder Teixeira Gomes	Simão Pedro de Almeida Pinho	José Carlos Rufino Amaro
29-09-2023	25-10-2023	25-10-2023	31-10-2023