

Course Unit	it Process Dynamics and Control			Field of study	Process Simulation, Control and Optimization	
Master in	Chemical Engineering			School	School of Technology and Management	
Academic Year	2023/2024	Year of study	1	Level	2-1	ECTS credits 6.0
Туре	Semestral	Semester	1	Code	6362-756-1103-00-23	
Workload (hours)	162	Contact hours			C - S - solving, project or laboratory; TC	Fieldwork; S - Seminar, E - Placement; OT - Tutorial; O - Other

Rolando Carlos Pereira Simões Dias Name(s) of lecturer(s)

Learning outcomes and competences

- At the end of the course unit the learner is expected to be able to: 1. Recognize the motivations to study dynamics and control of chemical process. 2. Perform the linearization of systems with multiple variables.

- . Use conservation laws to obtain transfer functions and apply this concept to analyze open loop dynamic systems. . Quantify the dynamic behavior of first order systems and identify typical examples associated to chemical processes. . Quantify the dynamic behavior of second order and higher order systems and identify typical examples associated to chemical processes. . Quantify the dynamic behavior of feedback controlled systems. Identify typical chemical processes controlled by feedback. . Applying and quantify the dynamic behavior of feedback controlled systems. Identify typical chemical processes controlled by feedback.
- 6
- Analyze and quantify the stability of feedback controlled systems. Apply MATLAB to real domain analysis of system dynamics (numerical solution of IVP). Use MATLAB and SIMULINK to analyze the open loop dynamics and the 8 closed loop control of dynamic systems.

Prerequisites

- Before the course unit the learner is expected to be able to: 1. Know and quantify heat, mass and momentum transfer phenomena.
- Establish and solve conservation laws.
 Know chemical processes.

Course contents

Motivations to perform the control of chemical process. Linearization of dynamic systems and Laplace transforms. Transfer functions. Dynamic behavior of first and second order systems. High order systems. Dynamic behavior and stability of feedback systems.

Course contents (extended version)

- Motivations to perform the control of chemical process

 Influence of external disturbances, stability of chemical process, optimization of chemical process.
 Laws of conservation of momentum, energy and mass.
 Control of a heated stirred tank, unstable chemical reactor, optimization of a batch reactor.

 Linearization of dynamic systems and Laplace transforms

 Linearization of systems with multiple variables.
 Laplace transforms: properties and applications.
 Transfer functions: properties and applications.
 Poles and zeros of transfer functions. Stability.

 Dynamic hebraying of first order systems

- Poles and zeros of transfer functions. Stability.
 Dynamic behavior of first order systems

 Disturbances of dynamic systems.
 Real time models. Transfer function and associated parameters.
 Dynamic systems with capacity for mass and energy storage.

 - Pure capacitive systems. Characterization of the dynamic response of first order systems. Case studies.
- Opnanci behavior of second order systems
 Real time models. Transfer function and associated parameters.
 - Characterization of the dynamic response of second order systems. Damping factor effect.
 Second order dynamic systems resulting from two first order systems in series.
 Inherently second order dynamic systems.
 Case studies.
- Dynamic behavior of higher-order systems

 N first-order systems in series.
- N first-order systems in series.
 Dynamic systems with dead time.
 Dynamic systems with inverse response.
 Dynamic behavior of feedback systems
 Closed loop dynamics. Control objectives, loads, controlled variables, set-point.
- Closed loop dynamics. Control objectives, loads, controlled variables, set-point.
 Block diagram and algebra of control loops. Quantification of closed loop responses.
 Servo and regulator problems. Feedback controllers.
 Analysis of case studies involving feedback controllers.
 Stability of feedback systems
 Stability definition and application to closed loop systems response.
 Poles of the closed loop transfer function. The characteristic equation.
 Routh-Hurvitz stability criterion. The method of root-locus.
 Frequency response analysis. Amplitude ratio. Phase lag. Complex domain analysis.
 Bode diagrams. Nyquist plots.
 Bode stability criterion. Tuning of controllers. Gain and phase margins.
 Ziegler-Nichols tuning technique. Nyquist stability criterion.

Recommended reading

- Process Dynamics and Control, D. E. Seborg, T. F. Edgar, D. A. Mellichamp, F. J. Doyle III, 4th Ed, Wiley, 2016
 Modern Control Engineering, K Ogata, Pearson, 5 edition, 2010
 Principles and Practice of Automatic Process Control, C. A. Smith, A. Corripio, 3^a Ed., Wiley, 2006
 Process Dynamics and Control: Modeling for Control and Prediction, B Roffel, B Betlem, John Wiley & Sons, 2006
 Elementos de Dinâmica e Controlo de Processos Químicos, Rolando Dias, ESTIG, IPB, 2019

Teaching and learning methods

The unit will be taught using a combination of lectures, self guided learning and practice classes. Students will be provided with a study guide and support material, including e-learning facilities.

Assessment methods

- Alternative 1 (Regular, Student Worker) (Final, Supplementary, Special)

 Practical Work 20%
 Intermediate Written Test 25%
 Intermediate Written Test 25%
 Final Written Exam 30%

 Alternative 2 (Regular, Student Worker) (Special)

 Final Written Exam 100%

 Alternative 3 (Student Worker) (Final, Supplementary)

 Final Written Exam 100%

Language of instruction

English

Electronic validation						
Rolando Carlos Pereira Simões Dias	Hélder Teixeira Gomes	Simão Pedro de Almeida Pinho	José Carlos Rufino Amaro			
08-10-2023	25-10-2023	25-10-2023	31-10-2023			