

Course Unit	Unit Polymer Science and Product Engineering			Field of study	Polymers			
Master in	Chemical Engineering			School	School of Technology and Management			
Academic Year	2023/2024	Year of study	1	Level	2-1	ECTS credits 6.0		
Туре	Semestral	Semester	1	Code	6362-756-1101-00-23			
Workload (hours)	162	Contact hours	T 30 TP	30 PL - T	rc - s -	E - OT - O -		
T - Lectures; TP - Lectures and problem-solving; PL - Problem-solving, project or laboratory; TC - Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other								

Name(s) of lecturer(s) Maria Filomena Filipe Barreiro, Arantzazu Santamaria Echart

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- At the end of the course unit the learner is expected to be able to:

 1. Know some historical and industrial perspectives on polymer science;

 2. Identify the most relevant synthetic polymers, associated chemistry and used polymerization processes;

 3. Recognize the most relevant, natural or natural-based polymers, having in view industrial applications;

 4. Understand average molecular weight and polydispersity concepts, and know the major experimental determination techniques;

 5. Understand polymer morphology, and know some experimental techniques to access structural, morphological and thermal characterization;

 6. Know polymer processing techniques;

 7. Learn about specialty polymers and recent developments in polymer science;

 8. Know product engineering topics aimed at designing new polymer-based products oriented towards new developments, sustainability, and functional products.

Prerequisites

Before the course unit the learner is expected to be able to: Demonstrate background knowledge of Mathematics, Physics and Organic Chemistry.

Course contents

Identify synthetic polymers, associated chemistry and polymerization processes; Know natural or natural-based polymers; Understand the concept of molecular weight, polydispersity and techniques for its determination; Learn morphological concepts and techniques for structural, morphological and thermal characterization; Know polymer processing techniques; Know specialty polymers and new developments; Know and apply concepts of product engineering.

Course contents (extended version)

- 1 Introduction
 - Macromolecules, historical perspectives, technological and economic importance;
 Monomer, polymer, repeating unit and polymerization degree;
 Momopolymers and copolymers;

 - Tacticity;
 Linear, branched and crosslinking polymers;
 Amorphous and crystalline polymers;
 Thermoplastic and thermoset polymers.
 Synthetic polymers.
- 2. Synthetic polymers
 - Polyurethanes, polyamides, polyesters, polyethers, phenolic resins and epoxides;
 - Applications:
- Applications,
 Polymers produced by polycondensation and polyaddition;
 Polymers produced by polycondensation and polyaddition;
 Polymerization techniques (bulk, solution, emulsion and suspension).

 3. Natural and natural derived polymers
 Natural rubber; polysaccharides, polyamides and polyesters;
 Importance as biomaterials.

 4. Degree of polymerization and molecular weight

- Degree of polyfield and molecular weight.

 Molecular weight distribution and average molecular weight;

 Degree of polymerization and average molecular weight in number, weight;

 Experimental determination of molecular weight: absolute and relative methods;

 End-group analysis, membrane and vapour pressure osmometry, light scattering;

- End-group analysis, mentione and vapour pressure osmonery, light scattering,
 Intrinsic viscosity measurements and size exclusion chromatography.

 5. Morphological changes: linear amorphous polymers, crystalline polymers and crosslinking polymers;
 Glass transition temperature (Tg);
 Melting temperature (Tm);
 Crystalization kinetics;
 Exercimental technique for determining energialists, density measures and X ray diffraction;

 - Experimental techniques for determining crystalinity: density measures and X-ray diffraction; Structure-properties relationship;

 - Effect of molecular weight and composition on Tg;
 Experimental techniques for Tg and Tm evaluation: dilatometry and differential scanning calorimetry.
- Experimental exhibitions for 1g and 1m evaluation. diatometry and differential scanning calorimetry.
 Technological aspects
 Extrusion and molding techniques, composites, polymer blends, compounding;
 Extrusion, injection and thermoforming processing. Composites, nanocomposites and polymeric blends.
 Novel polymers and applications
- Water-based, conducting polymers, polymers derived from renewable resources, microencapsulation;
 Hydrogels, biocompatible and biodegradable polymers, adhesives devoted for biomedical applications.
 Polymeric nanofibers and their applications.

 8. Product engineering concepts.
- Steps to reach the production phase: identify and classify consumer needs;
 Develop product ideas, apply criteria of ideas selection, and outline manufacturing processes.
 Product development project.

Recommended reading

- Fried, Polymer Science and Technology, 2nd Edition, Prentice Hall, 2009;
 Campbell, Introduction to Synthetic Polymers, 3th Edition, Oxford University Press, 2011;
 3. Al-Maadeed, Ponnamma, Carignano Eds., Polymer Science and Innovative Applications: Materials, Techniques, and Future Developments, 1st Edition, Elsevier Science Publishing, 2020;
 N. D. Polychronopoulos, J. Vlachopoulos, Polymer Processing and Rheology, Functional Polymers, 1st Edition, Springer International Publishing, 2019.
 Cussler and Moggridge; Chemical Product Design, 2nd Edition, Cambridge University Press, 2011

This document is valid only if stamped in all pages.

Teaching and learning methods

The teaching methodologies involve theoretical and theoretical-practical classes for the exposition of concepts and problem solving. Additionally, a project for the development of an innovative product of polymeric origin will be carried out under a tutorial regime, where students, organized into groups, will combine the knowledge acquired in polymer science with that of product engineering.

Assessment methods

- Alternative 1 (Regular, Student Worker) (Final, Supplementary, Special)
 Development Topics 50% (Product development project.)
 Final Written Exam 50%
 Alternative 2 (Regular, Student Worker) (Special)
 Final Written Exam 100%
 Alternative 3 (Student Worker) (Final, Supplementary)
 Final Written Exam 100%

Language of instruction

Electronic velicle Con

English

Electronic validation			
Maria Filomena Filipe Barreiro	Hélder Teixeira Gomes	Simão Pedro de Almeida Pinho	José Carlos Rufino Amaro
13-10-2023	25-10-2023	25-10-2023	31-10-2023