

Course Unit	Signal Processing Applications			Field of study	Signal Processing		
Master in	Electrical and Computers Engineering			School	School of Technology and Management		
Academic Year	2023/2024	Year of study	1	Level	2-1	ECTS credits	6.0
Туре	Semestral	Semester	2	Code	5070-792-1201-00-23		
Workload (hours)	162	Contact hours			C - S	E - OT - Fieldwork; S - Seminar; E - Place	- O - ement; OT - Tutorial; O - Other
Name(s) of lecturer(s) João Paulo Ramos Teixeira							

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- at the end of the course unit the learner is expected to be able to:

 Use signal acquisition boards and develop tools for visualization and processing/filtering in real time;

 Know and use the principles and techniques of speech processing, namely models of speech production, analysis, synthesis and speech and speaker recognition;

 Knowing the characteristics of signals and knowing how to extract them from different types of signals;

 Know feature selection and dimensionality reduction methods. Use tools to apply them;

 Know and apply methods of identification and treatment of outliers and normalization methods;

 Know various methods based on Artificial Intelligence for classification and prediction processes. Know tools for applying these methods;

- 7. Know and apply evaluation metrics of classification/prediction models;8. Apply and understand the information contained in the Continuous and Discrete Wavelet transforms;

Prerequisites

Before the course unit the learner is expected to be able to:
1. programme under Matlab environment;
2. process signals under Matlab environment;

- understand the dual representation of signals in time-domain and frequency-domain.
 Signal Processing competencies.

Course contents

Acquisition of biosignals. Speech signal analysis and synthesis. Characteristics of s signals and respective algorithms. Application to speech signals and biosignals. Pre-processing processes and selection of signal characteristics for application in classification systems. Application of Intelligent Classification Methods to Signal Processing. Rating Evaluation Metrics. Wavelet Transform.

Course contents (extended version)

- Acquisition and Processing of Biosignals
 Acquisition of ECG, EMG and EEG signals;

- Acquisition of Ecc, Enric and EEC signals,
 Transmission, processing and visualization.

 2. Speech Signal Analysis and Synthesis
 Anatomy and physiology of the vocal tract;
 Introduction to the speech signal processing techniques and models;
 Temporal, spectral, cepstral and parametric analysis by linear prediction;
 Speech synthesis models;
 Speech and Exercise Recognition.

 - Speech and Speaker Recognition.
- Signal Features

 Cross-correlation/autocorrelation, SNR, Entropies, Spectral moments, Kurtosis;
 HNR, Jitter, Shimmer, F0, Formants, MFCC, LPC, spectrogram, moving average, energy, ZCR;
- Extraction algorithms.
- 4. Data pre-processing
 - Treatment of outliers;
- Normalization.
- Normalization.
 Application of Intelligent Classification Methods to Signal Processing
 MLP Neural Networks;
 - Deep-Learning (LSTM e CNN);
 Support Vector Machines;
- Ensemble.
 Rating Evaluation Metrics
- Accuracy, Precision, Recall rate, F1-score, AUC.
 Wavelet Transform
- Continuous and discreet.

Recommended reading

- 1. Michael Weeks, 'Digital Signal Processing Using Matlab And Wavelets', Jones & Bartlett Learning (2006), ISBN-13: 978-0977858200; 2. João P. Teixeira, 'Análise e Síntese de Fala Modelização Paramétrica de Sinais Para Sistemas TTS', Editorial Académica Espanhola (2013), ISBN: 978-3-659-06206-3
- 3. Guyon, I., & Elisseeff, A., 'An introduction to variable and feature selection'. In L. P. Kaelbling (Ed.) (2003), Journal of Machine Learning Research JMLR (Vol.
- Stanley Cohen. 'Artificial Intelligence and Deep Learning in Pathology', 1st Edition (2020), Elsevier.
 Paul R. Hill, 'Audio and Speech Processing With Matlab', CRC Press (2018), ISBN: 9781498762748;

Teaching and learning methods

In the classes, a brief presentation of each chapter will be made, accompanied by application examples and followed by integrative mini-project to be developed. The mini-projects will be development out during non-face-to-face hours and accompanied in the classes. A report will be prepared for each mini-project. The students' mini-projects will be presented and evaluated by their peers.

Assessment methods

- Single (Regular, Student Worker) (Final, Supplementary, Special)
 Practical Work 100% (The developed works are subject to a report and a formal presentation.)

Language of instruction

- Portuguese
 Portuguese, with additional English support for foreign students.

Electronic validation		
João Paulo Ramos Teixeira	José Luís Sousa de Magalhaes Lima	José Carlos Rufino Amaro
21-02-2024	27-02-2024	02-03-2024