

Course Unit	Se Unit Advanced computing			Field of study	Computer Engineering	
Master in	Informatics			School	School of Technology and Management	
Academic Year	2023/2024	Year of study	2	Level	2-2	ECTS credits 6.0
Туре	Semestral	Semester	1	Code	5060-710-2101-00-23	
Workload (hours)	162	Contact hours			C - S - solving, project or laboratory; TC	E · OT · O · Fieldwork; S · Seminar; E · Placement; OT · Tutorial; O · Other

Name(s) of lecturer(s)

José Carlos Rufino Amaro, Rui Alexandre Coelho Alves

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- understand the importance of high performance computing technologies
 know how to develop high performance applications based on the main related programming models
 know how to take advantage of cluster and cloud environments to run high performance applications

Prerequisites

- Before the course unit the learner is expected to be able to: 1. know how to code programs in the C language with a medium level of complexity 2. master fundamental concepts of Computer Architecture, Operating Systems and Distributed Systems 3. be proficient in using the command line environment and development tools in Linux

Course contents

Introduction to High-Performance Computing, Shared-Memory Programming, Distributed Memory Programming, Heterogeneous Programming, High-Performance Computing Environments

Course contents (extended version)

- Introduction to High-Performance Computing

 Conceitos e Terminologia
 Classes of Parallel Systems
 Parallel Computer Memory Architectures
 Topics on Designing Parallel Programs
 Parallel Programming Models

 Shared-Memory Programming

 Introduction to the Pthreads standard
 Pthreads API overview
 Thread management

 - Thread management

This document is valid only if stamped in all pages

- Inread management
 Synchronization mechanisms
 Application design patterns
 Debugging and profiling
 Distributed Memory Programming
 Introduction to the MPI standard

 - MPI API overview
 - Task environment management
 Point-to-Point communication
 Collective communication

 - Derived data-types
 Groups and communicators management
- Debugging and comminicators manager
 Debugging and profiling
 Heterogeneous Programming
 Introduction to the OpenCL standard
 OpenCL API overview

- OpenCL applications workflow
 Kernels design and programming
 OpenCL memory hierarchy
 Synchronization features

- Debugging and profiling
 5. High-Performance Computing Environments
 On-premises HPC clusters (ROCKS, OpenHPC)
 Cloud-based HPC clusters (AWS)

Recommended reading

- . "An Introduction to Parallel Programming (2nd Edition)"; Peter Pacheco; Morgan Kaufmann, 2021 . "Parallel Programming: Concepts and Practice"; B. Schmidt, J. Gonzalez-Dominguez, C. Hundt, M. Schlarb; Morgan Kaufmann, 2017 . "Programming with POSIX Threads"; David Butenhof; Addison Wesley, 1997 . "Using MPI"; W. Gropp, W. Lusk, A. Skjellum; The MIT Press, 2014 . "Heterogeneous Computing with OpenCL 2. 0"; D. R. Kaeli, P. Mistry, D. Schaa, D. P. Zhang; Morgan Kaufmann, 2015
- 4

Teaching and learning methods

Classes in which the presentation of concepts alternates with the resolution of related exercises, complemented by practical works carried out extra-classes. All documentation (slides, exercises and practical works) is provided through an e-learning platform.

Assessment methods

- Option 1 (Regular, Student Worker) (Final, Supplementary, Special)
 Final Written Exam 20%
 Practical Work 80%

Language of instruction	
English	

	Electronic validation			
	José Carlos Rufino Amaro, Rui Alexandre Coelho Alves	Tiago Miguel Ferreira Guimaraes Pedrosa	José Eduardo Moreira Fernandes	Nuno Adriano Baptista Ribeiro
J	16-10-2023	25-10-2023	30-10-2023	06-11-2023