

Course Unit Models and Prototypes			Field of study	Design		
Bachelor in	or in Art and Design - Minor in Design			School	School of Education	
Academic Year	2022/2023	Year of study	2	Level	1-2	ECTS credits 5.0
Туре	Semestral	Semester	2	Code	9898-662-2205-00-22	
Workload (hours)	135	Contact hours			C - S -	E - OT 16 O Fieldwork; S - Seminar, E - Placement; OT - Tutorial; O - Other

António Jorge Ferreira Vaz, Jacinta Helena Alves Lourenço Casimiro da Costa Name(s) of lecturer(s)

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- At the end of the course unit the learner is expected to be able to:

 1. Produce models and / or prototypes as a result of the three-dimensional formalization of ideas, concepts and projects;

 2. Make models, validation / test models, presentation models in the different phases of the intellectual production process of an object / product;

 3. Plan the three-dimensional execution of a prototype or mock-up;

 4. Carry out prototypes, selecting the appropriate scale, materials, technologies and production methods;

 5. Know the characteristics and physical qualities of materials and their efficient use;

 6. Interpret the fulfillment of the proposed objectives and develop new solutions based on the data resulting from the critical analysis of the model or prototype developed. developed.

Prerequisites

Before the course unit the learner is expected to be able to: Without pre-conditions

Course contents

1. Types of mock-ups; 2. Techniques and methods of making mock-ups; 3. Techniques and methods of manufacturing prototypes; 4. Prototyping technologies; 5. Assembly; 6. Finishes and color surface treatments.

Course contents (extended version)

- 1. Types of mock-ups;
- Study / volume, no functional, functional.
 Techniques and methods of making mock-ups;
 Techniques and methods of making prototypes;

- Prototyping technologies;
 Processing equipment and techniques;
 Assembly;
- 6. Finishes and color surface treatments

Recommended reading

- 1. ALVES, F. (2001). Protoclick Prototipagem rápida. Porto: FEUP;
 2. CHEE KAI, C., KAH FAI L., (2015). 3D Printing and Additive Manufacturing: Principles And Applications. Fourth Edition, World Scientific;
 3. GIBSON, I., ROSEN, D. (2013). Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, Springer;
 4. HALLGRIMSSON, B. (2013). Prototyping and Modelmaking for Product Design Laurence King Publishing;
 5. SHIMIZU, Y., KOJIMA, T., TANO M., MATSUDA, S. (2000). Models and Prototypes. Tokyo, Grafhic SHA.

Teaching and learning methods

In this UC is intended to promote learning in a sequential, progressive way. The following teaching methodologies will be used: theoretical content exposition, technical demonstrations, experimental work and practical work proposals for the application of theoretical contents.

Assessment methods

- 1. CONTINUOUS EVALUATION (Regular, Student Worker) (Final)

 - Projects 60% Reports and Guides 30% Presentations 10%

- 2. EXAM EVALUATION (Regular, Student Worker) (Supplementary, Special)

 Projects 60% (nº 4 art. 7 Frequency and Evaluation Regulations Classification obtained in Continuous Assessment)

 Practical Work 40% (Theoretical practical work proposal with the respective technical report and oral presentation.)

Language of instruction

Portuguese, with additional English support for foreign students

Electronic validation

Liectionic validation						
António Jorge Ferreira Vaz, Jacinta Helena Alves Lourenço Casimiro da Costa	Helena Maria Lopes Pires Genésio	António José Santos Meireles	Carlos Manuel Costa Teixeira			
02-01-2023	03-01-2023	23-01-2023	29-01-2023			