

Course Unit	Elements of Physics and Chemistry			Field of study	Natural Sciences	
Bachelor in	Environmental Education			School	School of Education	
Academic Year	2021/2022	Year of study	1	Level	1-1	ECTS credits 10.0
Туре	Annual	Semester		Code	9082-620-1002-00-21	
Workload (hours)	270	Contact hours			C - S - solving, project or laboratory; TC	E - OT 18 O - Fieldwork; S - Seminar, E - Placement; OT - Tutorial; O - Other

Name(s) of lecturer(s)

Adorinda Maria Rodrigues Pereira S. Gonçalves

Learning outcomes and competences

- At the end of the course unit the learner is expected to be able to: 1. Express a critical and objective discussion of environmental problems in using a scientific language in describing the events and scientifically substantiating one's options;
- 2. Demonstrate capacity to strictly observe the facts and phenomena, to analyze and formulate hypotheses to interpret / explain situations in the context of Physics and Chemistry;
- Explain concepts and apply basic principles on the behavior, structures and transformations of materials, especially on the fluids water and air and its influence on the environment; 3

- 4. Explain the changing nature of scientific models recognizing the limited duration of their conceptions;
 5. Describe energy transformations and discuss the different energy alternatives considering their environmental impacts;
 6. Use the appropriate tools and procedures to carry out experiments;
 7. Develop a research work on a specific environmental problem, using literature procedures, data collection and analysis for the interpretation of situations;
 8. Prepare and implement environmental education activities for different audiences based on content covered.

Prerequisites

Before the course unit the learner is expected to be able to: They are not required prerequisites.

Course contents

1. Materials and Environment: Properties and materials structures. 2. Chemical Reactions and Environment. 3. Mass and energy transfers between systems. 4. The radioactivity and the atomic structure. 5. Organics Chemistry. 6. Fluids: Principles of hydrostatic and fluids dynamics.

Course contents (extended version)

- 1. Materials and Environment: Properties and materials structures Behavior of materials and the Corpuscular Theory of Matter Properties of materials, substances and mixtures

 - Physical transformations: dissolution and changes of state
 - The importance of water and air: properties

 - Atmospheric pressure The air and water in the environment: quality problems
- Evolution of atomic models and chemistry bonds
 Chemical Reactions and Environment
- Chemical Reactions and Environment

 Chemical Reactions and Symbology
 Chemical Reactions and stoichiometric calculations
 Chemical Reactions and equilibrium
 Acid-base; Oxidation-reduction equilibrium
 Transformations of materials and waste treatment
 Mass transfer and quemical reactions: the vital functions of living things and the environment

 Mass transfer and quemical reactions: the vital functions of living things and the environment
 Mass and energy transfer between systems

 Forms and sources of energy: the internal energy of a system; the atomic / nuclear energy
 Temperature, thermal energy and heat
 Energy Transfers
 Electrical phenomena Static electricity and Electricity
 Electrical and magnetic phenomena in Environment
 Chemical Reactions, chemical bonds and Energy
 Mass transfer: Convection currents
 Thermodynamics and Thermochemistry: Energy conservation and Entropy
- Thermodynamics and Thermochemistry: Energy conservation and Entropy
 Radioactivity and the atomic structure

- Radioactivity and the atomic structure
 Radioactivity phenomena and Environment
 Isotopes and types of radiation
 Radioactive processes: decay, nuclear fission and nuclear fusion
 Applications of radioactive isotopes

- 5. Organic chemistry Nomenclature of organic compounds
 - Organic compounds families and properties. Isomers
 Aromatics-Halogenated compounds
- Acid-base behavior of organic compounds
 Redox reactions of organic compounds
 Other Reactions of Organic Compounds
 Hydrostatic and fluids dynamics Basics Law.

 - Hydrostatic and fluids dynamics basics Law. Properties of Fluids Pressure and pressure forces Hydrostatics Fundamental Law and Pascal's Law. Fluid flow: continuity. Fundamental law of hydrodynamics meanders, accumulation and erosion of riverbanks

Recommended reading

- Atkins, P. & Paula, J. (2017). Físico-Química: Fundamentos (6. ª ed.). Rio de Janeiro: Livros Técnicos e Científicos Editora
 Rocha, J. C. (2009). Introdução à Química Ambiental. Editora: Bookman
 Atkins, P., Jones, L. & Laverman, L. (2018). Princípios da Química Questionando a vida moderna e o meio ambiente (7. ª ed.). São Paulo: Bookman Ed.
 Chang, R. (2009). Química Geral Conceitos Essenciais (4. ª ed.). Lisboa: McGrawHill
 Almeida, M. J. & Costa, M. M. (2012). Fundamentos de Física (3. ª ed.). Coimbra: Edições Almedina

Teaching and learning methods

Research methodology on some of the issues, conclusions then discussed a large group. Diverse material resources will be used and made accessible to the training component of the practical and experimental work. This training practice will support the general presentation of topics in theoretical sessions. Development of a research about aconcrete environmental issues.

Assessment methods

Continuous evaluation - (Regular, Student Worker) (Final)

 Intermediate Written Test - 15%
 Intermediate Written Test - 20%
 Intermediate Written Test - 25%
 Development Topics - 20%
 Laboratory Work - 20%

 Alternative 2 - (Regular, Student Worker) (Supplementary, Special)

 Final Written Exam - 60%
 Development Topics - 20%
 Laboratory Work - 20%

Language of instruction

Portuguese

Electror	nic validation				
Adorinda Maria Rodrigues Pereira S. Conçalves		Delmina Maria P	ires	Paulo Miguel Mafra Gonçalves	Carlos Manuel Costa Teixeira
	21-10-2021	24-10-2021		29-10-2021	05-12-2021