

Course Unit	Physics			Field of study	Physics		
Bachelor in	Oenology			School	School of Agriculture		
Academic Year	2022/2023	Year of study	1	Level	1-1	ECTS credits 6.0	
Туре	Semestral	Semester	2	Code	9998-705-1201-00-22		
Workload (hours)	162	Contact hours			C - S - solving, project or laboratory; TC	E - OT 4 O - Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other	

Name(s) of lecturer(s)

Felícia Maria Silva Fonseca

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to: Have a fulfillment understanding of some domains of Physics science; Recognize the importance of learning outcomes through academic life.

Prerequisites

Before the course unit the learner is expected to be able to: Apply knowledge of: Trigonometry; Resolution of equation's systems; Differentiation and Integration.

Course contents

Mechanics; Thermodynamics; Fluid Mechanics

Course contents (extended version)

- 1. Mechanics Physical Quantities; Standards and Units - Vectorial Algebra
- Kinematics
- Dynamics
- Static
- Work and Energy
- Thermodynamics
 Thermodynamics Systems

 - Kinetic Theory
 Zero Law of Thermodynamics
 - First Law
 - Thermodynamic's Transformations/Specific Heat
 Second Law
- Third Law Entropy

document is valid only if stamped in all pages

This

- Entropy
 S. Fluids
 Physical properties
 Fundamental Equation of Hydrostatics
 Archimedee's Principle
 Describe Parallel

 - Pascal`s Principle
 Equation of Continuity

 - Bernoulli's Equation Laminar and Turbulent flow

Recommended reading

- Alonso, M., Finn, E. J., 1999. Física. Addison-Wesley.
 Haliday D., Resnick R., Walker, J., 2012. Fundamentos de Física. Volume 1, 2 e 3 9ª Edição, GEN.
 Apontamentos elaborados pelos docentes da UC.

Teaching and learning methods

Theoretical knowledge is accomplished by expositive method, using: blackboard, transparencies or data-show. At two ours classes, that aren't laboratorial, lessons are performed, in which, students learn strategies to solve exercises, and, they must participate on discussion about the best way how to get a solution.

Assessment methods

- With mid-term evaluation (Regular, Student Worker) (Final)

 Intermediate Written Test 50% (Corresponds to 3. 0 ECTS.)
 Final Written Exam 50% (Corresponds to 3. 0 ECTS.)

 Evaluation in final exam (Regular, Student Worker) (Final, Supplementary, Special)

 Final Written Exam 100% (Corresponds to 6. 0 ECTS.)

Language of instruction

Portuguese, with additional English support for foreign students.

Electronic validation			
Felícia Maria Silva Fonseca	Amilcar Manuel Lopes António	António Castro Ribeiro	Maria Sameiro Ferreira Patrício
06-12-2022	06-12-2022	19-12-2022	19-12-2022