

Course Unit	Informatics			Field of study	Computer Science		
Bachelor in	Environmental Engineering			School	School of Agriculture		
Academic Year	2023/2024	Year of study	1	Level	1-1	ECTS credits 5.5	
Туре	Semestral	Semester	1	Code	9099-814-1102-00-23		
Workload (hours)	148,5	Contact hours			C - S - solving, project or laboratory; TC	E - OT - O Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other	

Name(s) of lecturer(s) Sérgio Alípio Domingues Deusdado

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- At the end of the course unit the learner is expected to be able to:

 1. Explore the full potential of computer processing by providing it with knowledge and practice in some tools.

 2. Integrate in the current context of information technology, Internet, multimedia, intranet, extranet, e-learning, remote databases, and so on.

 3. Must be able to develop applications for computational algorithms development that automate the results using iterative and direct numerical methods.

 4. Develop practical applications of mathematical knowledge, using the numerical methods, using current technology to solve problems in engineering; Numerical modeling; Simulation; Optimization.

 5. Use some reference tools for apply basic concepts of statistics in concrete situations.

 6. Formalize and implement correctly problems involving the result of random experiences.

Prerequisites

Before the course unit the learner is expected to be able to: Not applicable

Course contents

Computers basic learning; Operating systems, Internet, Computer software; Algorithms; Computational approach to numerical methods and statistics.

Course contents (extended version)

- Computers basic learning
 Basic concepts; Definition of computer systems, computer architecture and working.
 Binary encoding.

- Operating systems
 OS constituents, Types, the OS functions.
 File system maintenance, utilities amd communications.
- - · Historical notes; TCP/IP and DNS; Services (e-mail, www, ftp, chat and other services);
- Search of Information; Security, E-learning.
- 4. Computer software
 - Microsoft Frontpage; On-line documents, Internet publications: Links; A website structure.
 Microsoft Excel; Formulas and functions; Databases; Drafting and editing graphics; Macros; Forms.

- Microsoft Excel; Formulas and functions; Databases; Drafting and editing graphics; Macros;
 5. Algorithms
 Basic concepts and terminology; algorithms and programs.
 Flow charts; algorithmic structures; data structures; modularization.
 6. Computational approach to numerical methods and statistics.
 SPSS Statistics tool. Interface and operation.
 Numerical algorithms relevant in Engineering.
 Notions of numerical methods for troubleshooting the engineering and applied mathematics;
 Advantages and disadvantages of using alternative numerical methods.
 Recognize the importance of a estimated error and learn to use it.

Recommended reading

- Marty Matthews, Windows 7, Verlag Dashofer, ISBN 9789896420741
 Heitor Pina, Métodos Numéricos, McGraw-Hill de Portugal. ISBN 9728298048
 Francis Scheid, Análise Numérica, McGraw-Hill de Portugal ISBN: 9729241198
 Chapra, Steven C.; Numerical methods for engineers. ISBN: 0-07-112180-3
 Exercícios Resolvidos com Excel XP e 2000, F C A-Editora Informática.

Teaching and learning methods

Classes with provision of content and tutorial examples of implementation, use of some tools; labor applied for solidification of knowledge, achieved in true some practical works.

Assessment methods

- Alternative 1 (Regular, Student Worker) (Final, Supplementary, Special)
 Final Written Exam 50% (Minimum required classification of grade 7(in the range 0 to 20) in the final written exam)
 Practical Work 50% (Approval of the practical component required for admission to the final written exam)

Language of instruction

Portuguese

Electronic validation

Electronic validation						
ĺ	Sérgio Alípio Domingues Deusdado	Pedro Miguel Lopes Bastos	Artur Jorge de Jesus Gonçalves	Paula Sofia Alves do Cabo		
Ĭ	30-01-2024	30-01-2024	01-02-2024	09-04-2024		