

Course Unit	rse Unit Integrated Planning			Field of study	Land Planning	
Bachelor in	Environmental Engineering			School	School of Agriculture	
Academic Year	2022/2023	Year of study	3	Level	1-3	ECTS credits 6.0
Туре	Semestral	Semester	2	Code	9099-309-3203-00-22	
Workload (hours)	162	Contact hours	T 30 TP T - Lectures; TP - Lectures a	- PL 30 T nd problem-solving; PL - Problem-	C - S - solving, project or laboratory; TC -	E - OT 20 O - Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other

Name(s) of lecturer(s)

José Manuel Correia Santos Ferreira Castro

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

use land planning methods for different themes and at different spatial scales;
 optimize the uses assigned to territory development;
 locate activities fitting objectives of regional development and resources conservation.

Prerequisites

Before the course unit the learner is expected to be able to: 1. Geographic Information Systems 2. Landscape Ecology

Course contents

Land planning: concepts of planning and related; descriptive and prescriptive studies, and their models; organization of environmental studies - Strategic level, Regulation level, and Design level. Models and tools applied to the decision on integrated planning: hierarchical analytical method (AHP - ExpertChoice; linear programming (LP - Solver / Excel); geographic information systems (SIG – IDRISI, QGIS, WebSIG).

Course contents (extended version)

- Land planning

 Environmental Planning Concepts: prescriptive and descriptive studies, and used models;
 Biophysical analysis: processing geographic information, steps and techniques of integration;
 Strategic Level: definition of stakeholders, objectives (criteria and targets), and alternatives;
 Level Adjustment: economic, social and environmental constrains; local and global sustainability;
 Level Design: diversity, heterogeneity and information;

 Models and tools applied to the decision in integrated planning

 Strategic Level: Analytic Hierarchy Method (AHP ExpertChoice)
 Regulation Level: linear programming (LP Solver / Excel)
 Design Level: geographic information systems, multicriteria and multiobjective models.

Recommended reading

- Golley, Frank B., Juan Bellot (Editors), Rural Planning from an Environmental Systems Perspective, Springer Verlag
 Lein, J. K., Integrated environmental planning. 2003, Oxford; Malden, MA: Blackwell Science. x, 228 p.
 Randolph, J., Environmental land use planning and management. 2004, Washington: Island Press. xxxviii, 664 p.
 Amler, B., et al. "Land use planning methods, strategies and tools." Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH (1999).
 Wehrmann, Babette. "Land Use Planning: Concept, Tools and Applications." Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ), Eschborn (2011).

Teaching and learning methods

Lectures, tutorials, field and labGIS-based practices

Assessment methods

- 1. Alternative 1 (Regular) (Final) Final Written Exam 30% Practical Work 70%

- Practical Work 70%
 Alternative 2 (Student Worker) (Final)
 Final Written Exam 100% (It includes practical exam)
 Alternative 3 (Regular, Student Worker) (Supplementary, Special)
 Final Written Exam 100% (It includes practical exam)

Language of instruction

1. Portuguese

Ζ.	English	

Electronic validation			
José Manuel Correia Santos Ferreira Castro	Manuel Joaquim Sabença Feliciano	Artur Jorge de Jesus Gonçalves	Maria Sameiro Ferreira Patrício
19-12-2022	06-01-2023	08-01-2023	09-01-2023