

Course Unit	Heat and Mass Transfer Processes			Field of study	Technology of Chemical Processes		
Bachelor in	Environmental Engineering			School	School of Agriculture		
Academic Year	2022/2023	Year of study	2	Level	1-2	ECTS credits 6.0	
Туре	Semestral	Semester	1	Code	9099-309-2102-00-22		
Workload (hours)	162	Contact hours	T 30 TP T - Lectures; TP - Lectures a	- PL 30 To nd problem-solving; PL - Problem-	C - S - solving, project or laboratory; TC -	E - OT 20 O - Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other	

Name(s) of lecturer(s) Elsa Cristina Dantas Ramalhosa

- Learning outcomes and competences
- At the end of the course unit the learner is expected to be able to:
- . Identify the processes involved in heat transfer; . Calculate the amount of heat transferred in unidimensional systems without and with heat generation;
- Determine temperature profiles; Determine thermal diffusivities of food products; З

- Determine the amount of heat transferred through extended surfaces, namely fins;
 Dimension heat exchangers;
 Calculate the diffusion rate of a particular compound;
 Determine the values of mass diffusivities and the existence of equilibrium between two fluids in contact.

Prerequisites

Before the course unit the learner is expected to be able to: Solve problems that involve differential and integral calculus.

Course contents

Part I - Basic Knowledge of heat transfer; Part II - Basic Knowledge of mass transfer.

Course contents (extended version)

- 1. Chapter I: Heat Transfer:
 - Introduction; - Steady-state conduction without and with internal production of energy:
 - Convection; - Systems of conduction - convection: fins:
 - Thermal Isolation;
 Unsteady-state conduction;

 - Heat exchangers;

This document is valid only if stamped in all pages

- Radiation
- Chapter II: Mass Transfer:

 Introduction. Mechanisms of mass transfer molecular mass transfer and convective mass transfer;
- Fick's First Law;

 - Mass transfer between phases;
 Rate equation for convective mass transfer;
 Solute distributed between two fluids in contact: equilibrium, interfacial transfer;

Recommended reading

- C. J. Geankoplis, Transport Processes and Unit Operations, Prentice Hall (1993);
 J. P. Holman, Transferência de calor, McGraw Hill (1983);
 F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, John Wiley (1996);
 Y. A. Çengel, Heat Transfer A practical approach, McGraw-Hill (2003).
 R. P. Singh and D. R. Heldman, Introduction to Food Engineering, Academic Press, 3rd Edition (2001)

Teaching and learning methods

Theoretical lessons: the professor will present the diverse subjects, appealing to the expositive method, using black board, overhead projector and/or data-show, and in several situations to the demonstrative method. Theoretic-Practical lessons: resolution of exercises, using the demonstrative and active methods; Experimental works.

Assessment methods

- Avaliation (I) (Regular, Student Worker) (Final)

 Final Written Exam 80% (During the semester, 3 small exams will be made. The final mark will be the mean.)
 Case Studies 20% (During the semester the teacher will ask the students to solve case studies.)

 Avaliation(II) (Student Worker) (Final, Supplementary, Special)

 Final Written Exam 100%

Language of instruction

Portuguese

Electronic validation			
Elsa Cristina Dantas Ramalhosa	António Manuel Coelho Lino Peres	Artur Jorge de Jesus Gonçalves	José Carlos Batista Couto Barbosa
07-12-2022	07-12-2022	08-12-2022	09-12-2022