

Course Unit	Introduction to Industri	ial Processes		Field of study	Engineering and engineering trades	
Bachelor in	Food Engineering			School	School of Agriculture	
Academic Year	2022/2023	Year of study	1	Level	1-1	ECTS credits 6.0
Type Semestral		Semester	1	Code	9087-641-1104-00-22	
Workload (hours)	162	Contact hours			C - S -	E - OT - O Fieldwork; S - Seminar, E - Placement; OT - Tutorial; O - Other

António Manuel Coelho Lino Peres, Luís Manuel Cunha Santos Name(s) of lecturer(s)

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:
Gain skills in the analysis of procedural units. Understand and analyze the operation of equipment in different separation processes used in industrial processing in the food sector.

Prerequisites

Not applicable

Course contents

1. Introduction to food processes: type of systems (ideal and deviations from ideality), units systems, global vision of the process (flow charts), types of processes, thermodynamic properties of pure substances, mass and energy balances. 2. Basic Unit operations and processes at room temperature: preparation of raw materials, grinding, size reduction, separation and concentration (centrifugation, filtration and tangential conventional liquid-liquid extraction, etc.).

Course contents (extended version)

- 1. System concept (isolated, closed and open). Dimensions and units. Dimensional consistency.
 2. Thermodynamic properties. Extensive and intensive properties.
 3. Pure Substances: rule of stages, changes of phase, diagrams of properties.
 4. State equation for ideal and real gas. State equation for liquids. Tables of properties.
 5. First law of thermodynamic: isothermic, isochoric, isobaric, adiabatic, isentropic.
 6. Closed Systems: Energy balances. Specific heats and their relationship with U and H.
 7. Control volumes: permanent, transient and uniform flow
 8. Mass and energy balances: fluxograms
 9. Basic Operations: descriptive approach and applications
 10. Importance of separation processes for food engineering. Processes selection
 11. Preparation of raw materials, grinding, size reduction, separation, concentration: general concepts
 12. Filtration: Conventional at constant pressure or flow.
 13. Tangential filtration (microfiltration, ultrafiltration, nanofiltration, hiperfiltration): membranes
 14. Centrifugation: particles and immiscible liquids concepts and applications at food level
 15. Evaporation: basic concepts

Recommended reading

- Figura L. O. , Teixeira A. A. (2007). Food Physics: Physical Properties Measurement and Applications Springer
 Gomes de Azevedo E. , Alves A. M. (2009). Engenharia de Processos de Separação, Coleção Ensino da Ciência e da Tecnologia, IST Press
 Moran, M. J. , Shapiro, H. N. (2000). Fundamentals of Engineering Thermodynamics, John Wiley & Sons, Inc
 Rao M. A. (2007). Rheology of Fluid and Semisolid Foods. Principles and Applications. 2ª Edição. Springer
 Sahin S. , Sumnu S. G. (2006). Rheological Properties of Foods in Physical Properties of Foods Springer, Alemanha, Capítulo 2: pp39-101

Teaching and learning methods

Teaching theoretical-practical lessons: - Oral presentations using audiovisual media; - Works based on technical-scientific bibliography; - Possible visits to companies and to traditional products exhibitions; - Encouraging participation of students: presentation/discussion of real cases, involvement in the organization of workshops, seminars or other technical/scientific events.

Assessment methods

- 1. Continuous: Exam (85%) + Works (15%) (Regular, Student Worker) (Final) 2. Final Exam (100%) (Regular, Student Worker) (Final, Supplementary, Special)

Language of instruction

- Portuguese
 Portuguese, with additional English support for foreign students.

Electronic validation

Electronic validation		,			
António Manuel Coelho Lino Peres, Luís Manuel Cunha Santos	Maria Fátima Alves Pinto Lopes da Silva		Elsa Cristina Dantas Ramalhosa	José Carlos Batista Couto Barbosa	
06-12-2022	07-12-202	2	07-12-2022	09-12-2022	