

Course Unit	Statistics	stics		Field of study	Mathematics and Statistics		
Bachelor in	Agronomic Engineerir	ıg		School	School of Agriculture		
Academic Year	2023/2024	Year of study	2	Level	1-2	ECTS credits	6.0
Туре	Semestral	Semester	1	Code	9086-813-2102-00-23		
Workload (hours)	162	Contact hours			C - S -	E - OT Fieldwork; S - Seminar; E - Place	- O - ement; OT - Tutorial; O - Other

Name(s) of lecturer(s)

Luísa Maria Lopes Pires Genésio

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

. do a correct sampling . characterize data 1. 2.

apply statistics methods
 To interpret the results

Prerequisites

Before the course unit the learner is expected to be able to: Don't have

Course contents

Review of the techniques of integration Descriptive statistics Probability theory. Probability Distribution Functions. Statistics Estimation (one Sample) Simple Regression analysis

Course contents (extended version)

1. Integral calculus review

- 2. Descriptive Statistics Introduction
 - Statistics objectives
 - Types of data and measurement uncertainties
 Population and sample
 Statistics and central tendency measures

 - Dispersion measures

 - Graphical presentation of the frequency table Others statistics

- Others statistics
 Probability Theory
 Basic notions
 Probability
 Frequency distributions
 Random variables
 Probability Distribution
 Introduction
 Discrete distributions
 Hypergeometric Distribution
 Binomial distribution
 Prosen distribution

 - Poisson distribution
 Continuous distributions
 - Gauss distribution
- Gauss distribution
 Significance tests
 Statistical hypothesis
 Null hypothesis
 Significance level
 Sampling distribution
 Distribution of sample
- Distribution of sample mean
 Central limit theorem
- 7. Non-parametris and parametric tests (one sample) 8. Simple linear regression

Recommended reading

Guimarães, R., & J. Cabral, J. (2010). Estatistica. Verlag Dashöfer Portugal.

Teaching and learning methods

Expository, demonstrative and intercative

Assessment methods

- Alternative 1 (Regular, Student Worker) (Final)

 Intermediate Written Test 50%
 Intermediate Written Test 50%

 Alternativa 2 (Regular, Student Worker) (Supplementary, Special)

 Final Written Exam 100%

Language of instruction

Portuguese

d

	Electronic validation				
Luísa Maria Lopes Pires Genésio		Carlos Manuel Mesquita Morais	Albino António Bento	Paula Sofia Alves do Cabo	
Γ	17-01-2024	17-01-2024	17-01-2024	23-01-2024	