

Course Unit	Hydraulic and Irrigation			Field of study	Rural Engineering		
Bachelor in	Agronomic Engineering			School	School of Agriculture		
Academic Year	2022/2023	Year of study	3	Level	1-3	ECTS credits	6.5
Туре	Semestral	Semester	2	Code	9086-307-3204-00-22		
Workload (hours)	175,5	Contact hours		- PL 30 T nd problem-solving; PL - Problem-	C - S - solving, project or laboratory; TC	E - OT Fieldwork; S - Seminar; E - Place	20 O - ment; OT - Tutorial; O - Other

Name(s) of lecturer(s)

António Castro Ribeiro, Nuno Miguel Santos da Conceicao

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

Know the methodologies for computing crop and irrigation water requirements. Know the main irrigation and drainage systems.

Prerequisites

- Before the course unit the learner is expected to be able to: 1. Solve and analyze practical fluid mechanics problems 2. Interpret topographic maps.

Course contents

Basic principles of fluid mechanics. Flow in pipes and closed conduits: fundamental equations; types of flow; head losses; Hydraulic machines. Pumping stations. Flow in open channels. Hydraulic measurements. Crop water requirements. Water balance and crop irrigation requirements; Irrigation methods: surface irrigation; sprinkler irrigation; microirrigation: system design, monitoring and management. Drainage: drainage requirements and system design.

Course contents (extended version)

- 1. Basic principles of fluid mechanics 2. Flow in pipes and closed conduits
- Pumping stations to supply water to reservoirs and irrigation systems
 Flow in open channels
 Hydraulic measurements

- 6. Crop water requirements

This document is valid only if stamped in all pages

- Concepts

- Concepts
 Evapotranspiration: measurement and estimation
 Reference evapotranspiration: FAO-Penman-Monteith equation
 Crop evapotranspiration. Crop coefficients
 Soil water balance and irrigation requirements
 Soil water: definitions and concepts; methodologies for soil water measurement
 Soil water balance in the rest zero.
- Soil water balance in the root zone. Soil water balance and irrigation water requirements
 Irrigation methods
 Surface irrigation
 Sprinkler irrigation

- Microirrigation
- 9. Soil drainage
- Drainage methods
 System design

Recommended reading

- 1. Allen, R. G., Pereira, L. S., Raes, D., Smith, M., 1998. Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and Drainage
- Paper 56, Rome. Cuenca, R. H. 1989. Open channel flow. In: Irrigation system Design, pp. 464-522, Prentice-Hall Inc.
- Lencastre, A. 1983. Hidráulica geral. Hidroprojecto, Lisboa.
 Keller, J. & Bliesner, R. D. 1990. Sprinkle and Trickle irrigation. Chapman & Hall, NewYork.
 Pereira, L. S. 2004. Necessidades de água e métodos de rega. Europa-América, Lisboa.

Teaching and learning methods

Lectures: oral presentation. Lab sessions: resolution of problems on applied hydraulics and irrigation systems design. Field sessions: observation of irrigation systems; technical visits to surrounding farms and irrigation projects. Seminar: oral presentation of the irrigation system design.

Assessment methods

- Alternative 1 (Regular, Student Worker) (Final)

 Practical Work 30% (Minimum mark: 9, 5 (0-20))
 Intermediate Written Test 35%
 Final Written Exam 35% (Minimum mark: 9, 5 (0-20))

 Alternative 2 (Regular, Student Worker) (Final, Supplementary, Special)

 Final Written Exam 100% (The final exam includes the practical component)

Language of instruction

Portuguese, with additional English support for foreign students.

Electronic validation			
António Castro Ribeiro, Nuno Miguel Santos da Conceicao	Arlindo Castro Ferreira Almeida	Albino António Bento	José Carlos Batista Couto Barbosa
19-12-2022	19-12-2022	20-12-2022	20-12-2022