

Course Unit	Statistics			Field of study	Mathematics and Statistics		
Bachelor in	Agronomic Engineering			School	School of Agriculture		
Academic Year	2022/2023	Year of study	2	Level	1-2	ECTS credits 6.0	
Туре	Semestral	Semester	1	Code	9086-307-2103-00-22		
Workload (hours)	162	Contact hours	T 30 TP		C - S - solving, project or laboratory; TC	E - OT 20 O - Fieldwork; S - Seminar, E - Placement; OT - Tutorial; O - Other	

Name(s) of lecturer(s) Luísa Maria Lopes Pires Genésio

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- . do a correct sampling . characterize data
- 3. apply statistics methods4. To interpret the results

Prerequisites

Before the course unit the learner is expected to be able to:

Course contents

Review of the techniques of integration Descriptive statistics Probability theory. Probability Distribution Functions. Statistics Estimation (one Sample) Simple Regression analysis

Course contents (extended version)

- 1. Integral calculus review
- Descriptive Statistics
 Introduction

 - Statistics objectives
 - Types of data and measurement uncertainties
 Population and sample
 Statistics and central tendency measures

 - Dispersion measures
 - Graphical presentation of the frequency table
 Others statistics

- Others statistics
 3. Probability Theory
 Basic notions
 Probability
 Frequency distributions
 Random variables
 4. Probability Distribution
 Introduction
 Discrete distributions
 Hypergeometric Distribution
 Binomial distribution
 Poisson distribution

 - Poisson distribution
 Continuous distributions
- Gauss distribution

- Significance tests
 Statistical hypothesis
 Null hypothesis
 Significance level
 Sampling distribution
- Distribution of sample mean
 Central limit theorem
- 7. Non-parametris and parametric tests (one sample) 8. Simple linear regression

Recommended reading

Guimarães, R., & J. Cabral, J. (2010). Estatistica. Verlag Dashöfer Portugal.

Teaching and learning methods

Expository, demonstrative and intercative

Assessment methods

- Alternative 1 (Regular, Student Worker) (Final)
 Intermediate Written Test 50%
 Intermediate Written Test 50%
 Alternativa 2 (Regular, Student Worker) (Supplementary, Special)
 Final Written Exam 100%

Language of instruction

Portuguese

Electronic validation			
Luísa Maria Lopes Pires Genésio	Carlos Manuel Mesquita Morais	Albino António Bento	Paula Sofia Alves do Cabo
07-12-2022	08-12-2022	09-12-2022	13-12-2022