

Course Unit	Clinical analysis			Field of study	Veterinary Technology	
Bachelor in	or in Veterinary Nursing			School	School of Agriculture	
Academic Year	2022/2023	Year of study	2	Level	1-2	ECTS credits 6.0
Туре	Semestral	Semester	2	Code	9085-671-2201-00-22	
Workload (hours)	162	Contact hours	T 30 TP T - Lectures; TP - Lectures a	- PL 30 T nd problem-solving; PL - Problem-	C - S - solving, project or laboratory; TC -	E - OT 20 O - Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other

Name(s) of lecturer(s)

Bruno Melgar Castañeda , Rui Miguel Vaz de Abreu

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

To identify the clinical importance of several biomolecules.
 To apply analytical methodologies used in Clinical Biochemistry

Prerequisites

Before the course unit the learner is expected to be able to: To have knowledge in Structural and Metabolic Biochemistry

Course contents

1. Type of sample, dosage methodologies, clinical importance and reference values for several biomolecules. 2. Urine tests.

Course contents (extended version)

1. Type of sample, dosage methodologies, clinical importance and reference values for biomolecules.

- 2. Proteins

- Total proteins and individual plasmatic proteins: albumin.
 Nitrogen non-protein compounds

 Uurea, creatinine, creatine and uric acid.
 Renal clearance and glomerular filtration tax. Evaluation of glomerular permeability.

 Carbohydrates and derivatives
- Glucose, ketonic bodies and glycosylated proteins.
- Lipids

 Cholesterol, cholesterol bound to lipoproteins and triglycerides.
- Sodium, potassium and chloride.
 7. Markers of mineral bone metabolism

- Karkers of initial both metabolism
 Calcium, phosphate and magnesium.
 Markers of hepatic function
 Bile pigments: bilirrubines and urobilinogen.
 Pharmacs and drugs.

10. Urine tests.
 11. Enzymes

 ALT, AST, CK, LDH, PAL, GGT, amylase, lipase, cholinesterase, PA, 5'-nucleotidase, myoglobin.

Recommended reading

- Burtis, C. A. (2016). Tietz, Fundamentos de Química Clínica (7ª ed.). Rio de Janeiro: Guanabara Koogan.
 Gaw, A. (2013) Clinical Biochemistry: an illustrated colour text. (5ª ed.). Churchill Livingstone, Elsevier.
 Devlin, T. M. (2010). Textbook of Biochemistry with Clinical Correlations (7ª ed.). John Wiley & Sons.
 Kaplan, L. A., Pesce, A. J. (2009). Clinical Chemistry Theory, Analysis and Correlation (5th ed.). Missouri: Mosby.
 Bracht, A. (2003). Métodos de Laboratório em Bioquímica. Barueri: Manole.

Teaching and learning methods

Theoretical-practical Classes: Lectures of theoretical contents and resolution of exercices. Practical laboratorial Classes: Realization of experimental protocols in the in the Clinical Biochemistry area: Summary examination of urine samples and Analysis of biocompounds in seric samples.

Assessment methods

- Alternative 1 (Regular, Student Worker) (Final, Supplementary, Special)

 Intermediate Written Test 30% (Theoretical Component: Frequency (30%))
 Final Written Exam 30% (Theoretical Component: Exam (30%))
 Reports and Guides 40% (Pratical Component: Diagnostic evaluation of protocols e reports.)

 Alternative 2 (Regular, Student Worker) (Supplementary, Special)

 Final Written Exam 60% (Theoretical Component: Exam (60 %))
 Final Written Exam 40% (Practical Component: Written practical exam. Minimum mark of Practical Component: 8, 5 values.)

Language of instruction

- 1. Portuguese 2. Portuguese, with additional English support for foreign students

Electronic validation			
Bruno Melgar Castañeda , Rui Miguel Vaz de Abreu	Sandra Sofia Quinteiro Rodrigues	Hélder Miranda Pires Quintas	Paula Cristina Azevedo Rodrigues
19-12-2022	19-12-2022	20-12-2022	20-12-2022