

Course Unit	Genetics			Field of study	Biology and biochemistry		
Bachelor in	Biology and Biotechnology			School	School of Agriculture		
Academic Year	2023/2024	Year of study	1	Level	1-1	ECTS credits 6.0	
Туре	Semestral	Semester	2	Code	9029-782-1203-00-23		
Workload (hours)	162	Contact hours	Т - ТР	- PL - T	c - s -	E - OT - O -	
T - Lectures; TP - Lectures and problem-solving; PL - Problem-solving, project or laboratory; TC - Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other							

Name(s) of lecturer(s) Dora Sofia Martins Henriques

Learning outcomes and competences

- At the end of the course unit the learner is expected to be able to:
 1. Applied the Mendel laws in the resolution of heredity problems
 2. Identify and explain the Mendel laws exceptions

- 2. Identify and explain the Mendei laws exceptions
 3. Interpreting the Hardy-Weinberg equilibrium
 4. Identify and explain types of gene mutation and chromosome mutation
 5. Knowing the structure and organization of the hereditary material
 6. Knowing the extranuclear genes
 7. Acquire the basic knowledge in the field of molecular genetics
 8. Understanding the relationship genotype-phenotype

Prerequisites

Before the course unit the learner is expected to be able to: Not applied

Course contents

Mendelian genetics. Multiple Alleles. Sex-linked inheritance. Gene interaction. Molecular basis of heredity: location and characterization of hereditary material. Organization of the hereditary molecules. Replication of DNA. Gene mutation and repair mechanisms. Changes in chromosome structure and number. Linkage. Populations genetics: Hardy-Weinberg Law. Quantitative genetics. Extranuclear inheritance. Genetic engineering.

Course contents (extended version)

- 1 GENETICS
 - Concept and evolution
- Importance, applications and perspectives
 2. MENDELIAN GENETIC's

 - Mendel's experimentsThe rediscovery of Mendelism
 - Mendel's laws
- Mendels laws
 MENDELIAN INHERITANCE IN HUMANS
 Autosomal dominant and recessive characters
- Backcross and test cross
 4. MENDELISM COMPLEX
- 4. MENDELISM COMPLEX
 Multiple allelomorphism
 The Human ABO blood groups
 5. INHERITANCE OF GENES LOCATED ON SEX CHROMOSOME
 Holandric genes and Sex-Linked Genes
 6. X CHROMOSOME INACTIVATION
 The Lyon hypothesis
 Barr body
 Barr body
 The Lyon hypothesis
 Barr body
 Barr body
 -
- Barr body
 7. SEX-LIMITED AND SEX-INFLUENCED AUTOSOMAL INHERITANCE
- Characteristics and examples 8. GENE INTERACTION

- Epistasis 9. MOLECULAR BASIS OF HEREDITARY

- 9. MOLECULAR BASIS OF HEREDITARY
 DNA as genetic material
 Chemical nature and structure

 10. MECHANISM OF DNA REPLICATION
 In vitro amplification of DNA: PCR

 11. ORGANIZATION OF THE GENOME
 Nuclear genome
 Extranuclear inheritance

 12. ANALYSIS OF THE GENOME
 Methods for the study of DNA
 Molecular analysis of genetic variability

 13. MUTATIONS
- 13. MUTATIONS
 Types of mutations
- Types of mutations
 Mechanisms of DNA repair

 14. VARIATIONS IN CHROMOSOME STRUCTURE
 Deletions, duplications, inversions, translocations

 15. VARIATIONS IN CHROMOSOME NUMBER
- VARIA TONS IN CHROMOSOME NUMBER
 Polyploidy
 Aneuploidy

 GENETIC LINKAGE AND CROSSING-OVER
 Chromosome mapping
 POPULATION GENETICS
 Hardy-Weinberg principle.
 Changes in phenotype frequencies
 QUANTITATIVE GENETICS
 Genotypic and environmental variance

- Genotypic and environmental variance

 19. APPLICATIONS OF GENETIC: GENETIC ENGINEERING

 - Applications to livestock, industry and agriculture
 Methods and techniques of genetic transformation

This document is valid only if stamped in all pages.

Recommended reading

- 1. Griffiths AJF, Wessler SR, Carroll SB, Doebley J, 2015. Introduction to Genetic Analysis. 11th Edition. W. H. Freeman and Company 2. Klug WS, Cummings MR, Spencer C, Palladino MA, 2015. Concepts of Genetics. 11th Edition. Pearson Education 3. Snustad DP, Simmons MJ, 2011. Principles of Genetics. 6th Edition. John Wiley & Sons

Teaching and learning methods

Theoretical Classes: Lectures of theoretical contents. Practical laboratorial Classes: Realization of experimental protocols in the genetics area.

Assessment methods

- Avaliação contínua (Regular, Student Worker) (Final)
 Intermediate Written Test 30% (Theoretical evaluation.)
 Final Written Exam 40% (Practical evaluation, which final classification must be equal or higher than 9. 5 val (0-20))
 Final Written Exam 30% (Average of the two theoretical exams, should be equal or higher than 8 val (0-20))
 Avaliação final (Regular, Student Worker) (Supplementary, Special)
 Final Written Exam 40% (Practical evaluation, which final classification must be equal or higher than 9. 5 val (0-20))
 Final Written Exam 60% (Theoretical evaluation, which final classification must be equal or higher than 8 val (0-20))

Language of instruction

Portuguese, with additional English support for foreign students.

Electronic validation

Dora Sofia Martins Henriques	Paula Cristina Santos Baptista	Altino Branco Choupina	Paula Cristina Azevedo Rodrigues
23-01-2024	23-01-2024	23-01-2024	23-01-2024