

Course Unit	Biophysics			Field of study	Physical Sciences		
Bachelor in	Biology and Biotechnology			School	School of Agriculture		
Academic Year	2023/2024	Year of study	1	Level	1-1	ECTS credits	6.0
Туре	Semestral	Semester	1	Code	9029-782-1101-00-23		
Workload (hours)	162	Contact hours		- PL - T		E - OT	- O -
			1 - Lectures, TP - Lectures a	ind problem-solving, PL - Problem-	solving, project or laboratory, TC	- Fleidwork, S - Seminar, E - Place	ment, OT - Tutoriai, O - Otner

Name(s) of lecturer(s) Amilcar Manuel Lopes António

Learning outcomes and competences

- At the end of the course unit the learner is expected to be able to:

 1. Recognize the importance of some fundamental laws of physics to explain some biological phenomena. Make the connection between these laws to explain some simple technological applications.
- Recognizing the importance of different systems of units, measurements, accuracy and precision. Distinguish and quantify vector and scalar quantities.
 Understand different properties of some fluids. Calculate densities and pressures. Determine pressure values at different points. Calculate flux values, speed and pressure fluids flow.

 4. Determine electrostatic force values and electric fields. Quantify electric current and its effects. Determine field values and magnetic force. Quantify induced
- voltages and current.

 5. Characterize different radioisotopes. Identify diferent types of ionizing radiation. Determine half-lifes of radioisotopes.

 6. Estimate the dose, equivalent dose and effective absorbed dose. Recognize the values of maximum dose and its biological effects.

Prerequisites

Before the course unit the learner is expected to be able to: Mathematics, Physics or Chemistry at the level of Secondary Education.

Course contents

FLUIDS: Properties. Laws of Hydrostatic. Laws of Hydrodynamics. BIOELECTROMAGNETISM: Charge. Force. Field. Energy. Potential. Resistance. Current. Ohm's Law. Kirchoff's Laws. Simple Models. Magnetic Field. Magnetic Force. Faraday's Law. Induced Currents. RADIOISOTOPES and RADIOACTIVITY: Isotopes and applications. Ionizing Radiations. Half-life. Dose. Effective Dose. Equivalent Dose. Dose Limit. Biological Effects.

Course contents (extended version)

- 1. FLUIDS

 - Density. Viscosity. Surface Tension. Capillarity. Pressure.
 Fundamental law of hydrostatics. Pascal's Principle. Archimedes' Principle.
 Flow and continuity equation, Bernoulli's equation. Poiseuille's equation and Reynolds number.
- Flow and continuity equation, Bernoulli's equation. Poiseuille's equation and Reynolds nu
 2. BIOELECTROMAGNETISMO
 Electric charge. Electrical force. Electric field. Potential. Potential energy.
 Voltage, Current and Electric Resistance. Electric models: Kirchoff laws.
 Magnetic field and electric current: Biot-Savart's law. Magnetic force: Lorentz's equation.
 Magnetic flux and magnetic induction: Faraday's law.

 3. RADIOISOTOPES and RADIOACTIVITY
 Types of Radiation. Radioisotopes.
 Half-life. Law of radioactive decay. Radiotracers.
 Dose. Equivalent Dose. Effective Dose. Dose Limit. Biological Effects.

Recommended reading

- 1. ANTÓNIO, A. L. (2016). "Biofísica textos e problemas" (www. esa. ipb. pt/grupofis)
 2. DURAN, J. E. R. (2013). "Biofísica : Conceitos e Aplicações". Brasil: Pearson
 3. PEDROSO LIMA, J. J. (2014). "Biofísica Médica". Coimbra: Imprensa da Universidade
 4. HALLIDAY D. , RESNICK R. , & WALKER J. (2014). "Fundamentals of Physics (10th ed.)". USA: Wiley
 5. URONE, P. P. (2016). "Physics with health science applications". USA: Wiley

Teaching and learning methods

Presentation of fundamental concepts in the proposed content. Resolution of some numerical problems and conducting some experiments, by the teacher and others

Assessment methods

- Alternative 1 (Regular, Student Worker) (Final, Supplementary, Special)
 Final Written Exam 90%

 - Practical Work 10%

Language of instruction

- Portuguese
 English

Electronic vali	idation
-----------------	---------

Licetionic validation				
Amilcar Manuel Lopes António	Tomás de Aquino Freitas Rosa Figueiredo	Altino Branco Choupina	Maria Sameiro Ferreira Patrício	
17-01-2024	17-01-2024	17-01-2024	17-01-2024	