

Unidade Curricular Biofísica		Área Científica	Ciências Físicas	
Licenciatura em Biologia e Biotecnologia		Escola	Escola Superior Agrária de Bragança	
Ano Letivo 2023/2024	Ano Curricular 1	Nível	1-1 Ci	créditos ECTS 6.0
Tipo Semestral	Semestre 1	Código	9029-782-1101-00-23	
Horas totais de trabalho 162	Tionad ad defination			E - OT - O - Seminário; E - Estágio; OT - Orientação Tutórica; O - Outra

Nome(s) do(s) docente(s) Amilcar Manuel Lopes António

Resultados da aprendizagem e competências

- No fim da unidade curricular o aluno deve ser capaz de:

 1. Reconhecer importância de algumas leis da Física e estabelecer a ligação entre estas e fenómenos elementares, explicando algumas aplicações tecnológicas
- Reconhecer a importância dos diferentes sistemas de unidades, medidas, rigor e precisão. Distinguir e quantificar grandezas vectoriais e escalares.
 Compreender as diferentes propriedades de alguns fluidos. Calcular valores de densidades e pressão, em diferentes sistemas de unidades. Determinar valores de Compreender as direrentes propriedades de alguns indides. Calculai valores de diferentes pontos.
 Determinar valores de força e campos eléctricos. Quantificar corrente eléctrica e seus efeitos. Determinar valores de campo e força magnética. Quantificar valores de tensão e corrente induzidas.
 Caracterizar diferentes radioisótopos. Identificar diferentes tipos de radiação ionizante. Determinar tempos de semi-vida de radioisótopos.
 Estimar valores de dose, dose equivalente e dose efectiva absorvida. Reconhecer valores de dose limite e seus efeitos biológicos.

Pré-requisitos

Antes da unidade curricular o aluno deve ser capaz de: Matemática, Química ou Física ao nível do Ensino Secundário.

Conteúdo da unidade curricular

FLUIDOS: Propriedades Fundamentais. Leis da Hidrostática. Leis da Hidrodinâmica. BIOELECTROMAGNETISMO: Carga Eléctrica. Força Eléctrica. Campo Eléctrico. Energia. Potencial. Resistência. Corrente. Lei de Ohm. Leis de Kirchoff. Modelos Simples. Campo Magnético. Força Magnética. Lei de Faraday. Correntes Induzidas. RADIOISOTOPOS e RADIOACTIVIDADE: Isótopos e aplicações. Radiações Ionizantes. Tempos de Vida. Dose. Dose Efectiva. Dose Equivalente. Dose limite. Efeitos biológicos.

Conteúdo da unidade curricular (versão detalhada)

- 1. FLUIDOS
- Densidade. Viscosidade. Tensão superficial. Capilaridade. Pressão.
 Lei Fundamental da Hidrostática. Princípio de Pascal. Princípio de Arquimedes.
 Caudal e equação da continuidade; Equação de Bernoulli. Equação de Poiseuille. Número de Reynolds.
 2. BIOELECTROMÁGNETISMO

- BIOELECTROMAGNETISMO

 Carga eléctrica. Força eléctrica. Campo eléctrico. Potencial. Energia potencial eléctrica.
 Tensão, Corrente e Resistência eléctrica. Modelos eléctricos: simples: Leis de Kirchoff.
 Campo magnético e corrente eléctrica: lei de Biot-Savart. Força magnética: equação de Lorentz.
 Fluxo magnético e indução magnética: lei de Faraday.

 RADIOISÓTOPOS e RADIOACTIVIDADE

 Radioisótopos. Tipos de radiação.
 Tempo de semi-vida; Lei do decaimento radioactivo; Marcadores radioactivos.
 Dose. Dose Equivalente. Dose Efectiva. Dose Limite. Efeitos Biológicos.

Bibliografia recomendada

- 1. ANTÓNIO, A. L. (2016). "Biofísica textos e problemas" (www. esa. ipb. pt/grupofis)
 2. DURAN, J. E. R. (2013). "Biofísica : Conceitos e Aplicações". Brasil: Pearson
 3. PEDROSO LIMA, J. J. (2014). "Biofísica Médica". Coimbra: Imprensa da Universidade
 4. HALLIDAY D. , RESNICK R. , & WALKER J. (2014). "Fundamentals of Physics (10th ed.)". USA: Wiley
 5. URONE, P. P. (2016). "Physics with health science applications". USA: Wiley

Métodos de ensino e de aprendizagem

Das aulas Teórico-Práticas constará, para além da exposição dos conceitos fundamentais no âmbito dos conteúdos propostos, a resolução de alguns problemas numéricos e a realização de algumas experiências demonstrativas pelo professor e outras com a participação dos alunos.

Alternativas de avaliação

- Alternativa 1 (Ordinário, Trabalhador) (Final, Recurso, Especial)
 Exame Final Escrito 90%
 Trabalhos Práticos 10%

Língua em que é ministrada

- 1. Português
- 2. Inglês

validação Eletronica					
Amilcar Manuel Lopes António	Tomás de Aquino Freitas Rosa Figueiredo	Altino Branco Choupina	Maria Sameiro Ferreira Patrício		
17-01-2024	17-01-2024	17-01-2024	17-01-2024		