

Course Unit	Init Biotecnology and genetic resources conservation			Field of study	Biology and biochemistry			
Bachelor in	lor in Biology and Biotechnology			School	School of Agriculture			
Academic Year	2022/2023	Year of study	3	Level	1-3	ECTS credits	6.0	
Туре	Semestral	Semester	2	Code	9029-510-3201-00-22			
Workload (hours)	162	Contact hours	* 15		c - s -		4 0 -	
T - Lectures; TP - Lectures and problem-solving; PL - Problem-solving, project or laboratory; TC - Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other								

Name(s) of lecturer(s) Ana Maria Pinto Carvalho, Vasco Augusto Pilão Cadavez

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

To master basic concepts of genetic resources conservation considering the importance of diversity, biotechnological advances and techniques used to assess populations variability and species

- To identify and apply methods and techniques for the conservation of plant and animal genetic resources

 To understand the mechanisms, as well as the advantages and disadvantages of in-situ and ex-situ conservation

 To be aware about national, international and European regulations and to identify several current conservation guidelines and programmes

 To identify and recognize the leading institutions for the conservation of plant and animal genetic resources

Prerequisites

Before the course unit the learner is expected to be able to: To master the principles of plant and animal biology

Course contents

Conservation and breeding. Diversity and sources of genetic variability. Inbreeding and inbreeding depression. Genetic erosion. Mechanisms of extinction. Species rehabilitation, conservation and management of diversity. The role of biotechnology in genetic resources conservation. Methods and techniques for conservation. Genetic diversity conservation guidelines and programs. Genebanks. Breed registry and herd books. Databases and information networks. Legislation and regulations

Course contents (extended version)

- Biology and conservation of genetic resources
 Biodiversity. The Origins of Conservation Biology. Arguments for Preserving Biological Diversity
 Genetic variation, ecosystem variation, or species variation (number of species)
 Genotype and phenotype. Heritability and repeatability coefficient
 Qualitative, quantitative traits, transmission. Aptitude. Productive, reproductive performance
 Origin and significance of genetic variation. Inbreeding and inbreeding depression
 Genetic erosion. Vulnerability. Habitat destruction, fragmentation, degradation, changes
 Overexploitation, invasive species, diseases, global climate change

 2. Conservation and breeding
 Essential concepts for small populations
- - Essential concepts for small populations
 Selection of breeds/strains, mating methods, crossbreeding. Selective breeding and genetic material
 Animal genetic resources programmes and populations management. Breed registry and herd books.
 - Red list of threatened species

- Animal genetic resources
 Origin of the main domestic species. Migratory paths. Species difusion. Breeds
 Portuguese breeds. Census and characteristics of the populations
- Polituguese breeds. Ceristis and chiadrensities of the populations
 Animal identification: significance and methods
 Optimizing the management and use of animal genetic resources
 Specific products: organic certification, geographical indication (GI), designation of origin (DO)
 Agricultural biodiversity and plant genetic resources conservation
 Centres of origin of cultivated plants. Domesticated crops and crop wild relatives
 Agroecosystem services. Pollinators, soil microbiota, carbon sequestration, water and soil resources Agroecosystem services. Pollinators, soil microbiota, carbon sequestration, water and soil resources.
 Neglected and underutilized crops. Landraces
 Importance and value of plant genetic diversity. Key steps in conservation and use of PGResources
 Methods and techniques for genetic resources conservation
 Technologies for collection and conserving genetic material. Molecular and genetic tools.
 In-situ and ex-situ conservation. Ways of valuing and monitoring plant genetic diversity.
 Community-based management of animal and plant genetic resources
 Genebanks. Characteristics and types of germplasm. Monitoring and management tools
 Protected areas, networks and biological reserves, conservation in captivity
 Global strategy for genetic resources conservation. The role of FAO
 National and European regulations. Networks, programmes and projects
 International treaty on plant genetic resources for food and agriculture
 The global plan of action for animal genetic resources
 International legal framework on animal/plant genetic resources

Recommended reading

- 1. Primack R. B. (2010). Essentials of Conservation Biology. 5th revised edition. Sinauer Associates, INC. Sunderland, Massachussetts. USA.
 2. Pandit M. W., Shivaji S., Singh L (2007) You Deserve, We Conserve: A Biotechnological Approach to Wildlife Conservation. K. International Pvt Ltd
 3. Dulloo, E.M. (ed.) (2021) Plant genetic resources: A review of current research and future needs. https://shop.bdspublishing.com/store/bds/detail/workgroup/3-190-
- 4. FAO (2022). The State of Food and Agriculture 2022. available at https://doi.org/10.4060/cb9479en. Other FAO Web pages available at http://www. fao. org/nr/cgrfa/cgrfa-home/en/
 5. FAO (2020). How the world's food security depends on biodiversity. CB0416EN/1/07. 20. Rome, Italy. https://www. fao. org/publications/card/en/c/CB0416EN/

Teaching and learning methods

Theoretical-practical lessons within 7 weeks. Lectures on basic concepts. Short papers on selected topics and web searching. Guided reading. Oral presentations of the main topics, illustrated with practical examples and problems to increase group discussion and participation. TIC, namely e-learning, and both auditory and visual stimuli are used to promote augmented learning.

Assessment methods

- 1. Coursework assessement (Regular) (Final)
 Case Studies 40% (Guided reading and text summaries to be orally presented and discussed)
 Development Topics 60% (Written report about a selected topic and oral presentation)
 Intermediate Written Test 60% (Written test on selected course contents, insted of the report proposed in b))

 2. Final examination on course contents (Regular, Student Worker) (Final, Supplementary, Special)
 Final Written Exam 100% (Final examination on course contents)

Language of instruction

Portuguese

Electronic validation			
Ana Maria Pinto Carvalho, Vasco Augusto Pilão Cadavez	Ana Maria Antão Geraldes	Altino Branco Choupina	Ramiro Corujeira Valentim
07-12-2022	07-12-2022	07-12-2022	19-12-2022