

Bachelor in Biology and Biotechnology School School of Agriculture Academic Year 2022/2023 Year of study 3 Level 1-3 ECTS credits 6.0 Type Semestral Semester 1 Code 9029-510-3103-00-22 9029-510-3103-00-22	Course Unit	Biotechnology applied to genetic improvement			Field of study	Biology and biochemistry/Animal and agrarian production	
	Bachelor in	Biology and Biotechnology			School	School of Agriculture	
Type Semestral Semester 1 Code 9029-510-3103-00-22	Academic Year	2022/2023	Year of study	3	Level	1-3	ECTS credits 6.0
	Туре	Semestral	Semester	1	Code	9029-510-3103-00-22	
Workload (hours) 162 Contact hours T 30 TP PL 30 TC S E OT 4 O - T - Lectures; TP - Lectures; and problem-solving; PL - Problem-solving; PL - Problem-solving; PL - Problem-solving; PL - Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other	Workload (hours)	162	Contact hours				

Name(s) of lecturer(s) Maria José Miranda Arabolaza, Vasco Augusto Pilão Cadavez

Learning outcomes and competences

- At the end of the course unit the learner is expected to be able to: 1. Have notions of classic Animal and Plant Breeding. Crossbreeding and animal and plant selection. 2. Molecular markers most used for animal and plant breeding. Query Databases 3. Recognizing the advantage of improvement assisted by molecular markers and their impact on annual genetic progress

Prerequisites

Before the course unit the learner is expected to be able to: None

Course contents

Concepts of Classic Animal and Plant Breeding Improvement by crossing and Animal and Plant selection, different gene actions involved. Selection assisted by molecular markers. Karyotypes, QTLs and microarrays. Genetic transformation of plants. Genetic engineering in plant breeding.

Course contents (extended version)

1. Concept of Plant Biotechnology 2. Plant Genetic Resources: Source of natural variability Biotechnology as a source of variability

- 3. Molecular markers
- Morphological markers
 Biochemical markers
- Molecular markers
- Gene mapping Markers assisted selection (MAS): validation, advantages of MAS over conventional breeding protocols
- Markers assisted selection (who), variation, advantages of who over conventional to 4. Biotechnological techniques in plant breeding
 Artificial pollinization
 Somatic Hybridization: protoplast fusion, hybridization selection of the fusion product.
 Mutagenesis. Tilling. CRISPR
 Tissue culture. Somaclonal variation
- 5. Genetic transformation of plants Direct methods: electroporation and biolistic
 - Indirect methods: Agrobacterium mediated transfer

- Indirect metricus. Agrobacterion metricated transfer
 6. Transgenic plants
 7. Animal Breeding

 Overview of animal breeding programs. Organization principles and steps involved.
 Quantitative genetics: genes effects and sources of variation.
 Selection: objectives, Effects of selection, indirect selection, multiple trait selection.
- Heritability and genetic gain.
 Inbreeding: implications and applications.
 Crossbreeding: genetic basis of crossbreeding.
 New technologies applied to the improvement. Improvement assisted by molecular markers
 Microsatellites and quantitative trait loci (QTLs)
 Karyotype analysis
 Microsareu tebaologu (chips with SNBs) applied to apimal breeding.
- Microarray technology (chips with SNPs) applied to animal breeding
 9. Analyzing the impact of new technologies in the annual genetic progress

Recommended reading

- BRACKETT, B. G.; SEIDEL, G. E. and SEIDEL, S. M., 2012. New Technologies in Animal Breeding. Academic press. London
 GAMA, L. T., 2002. Melhoramento Genético Animal. Lisboa
 KINGHORN, B.; Van der WERF, J. and Ryan M., 2002. Animal Breeding- Use of new Technologies. Beef CRC and University of New England.
 CUBERO, J. I., 2013. Introducción a la Mejora Genética Vegetal. 3ª ed. Ed. Mundi-Prensa.
 ACQUAAH, G., 2012. Principles of Plant Genetic and Breeding. 2ª ed. Wiley-Blackwell.

Teaching and learning methods

Teaching classes (included practices of laboratory) . In no present classes, the students will have to produce a work handing to a teacher over a final report, present and discuss it. Resources: audiovisual, multimedia, computer, online library, laboratory equipment,

Assessment methods

- Continuous (Regular, Student Worker) (Final)

 Intermediate Written Test 35% (Minimum score 9. 5)
 Final Written Exam 35% (Minimum score 9. 5)
 Practical Work 30% (Minimum score 9. 5)

 Final examen (Regular, Student Worker) (Final, Supplementary, Special)

 Final Written Exam 100% (Minimum score 9, 5)

Language of instruction	
Portuguese	
Electronic validation	

Maria José Miranda Arabolaza, Vasco Augusto Pilão Cadavez	Paula Cristina Santos Baptista	Altino Branco Choupina	Paula Cristina Azevedo Rodrigues
21-12-2022	21-12-2022	21-12-2022	21-12-2022