

Course Unit	Environmental biotechnology			Field of study	Environmental protection techniques	
Bachelor in	Biology and Biotechnology			School	School of Agriculture	
Academic Year	2022/2023	Year of study	3	Level	1-3	ECTS credits 6.0
Туре	Semestral	Semester	1	Code	9029-510-3102-00-22	
Workload (hours)	162	Contact hours			C - S - solving, project or laboratory; TC	E - OT 4 O - Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other

Name(s) of lecturer(s) Marina Maria Pedrosa Meca Ferreira Castro, Paula Cristina Santos Baptista

Learning outcomes and competences

- At the end of the course unit the learner is expected to be able to:
- know the main types of environmental pollutants and their effects in different environments Relate the characteristics of environments contaminated with their ability to degrade or transform specific hazardous materials

- know the importance of soil components in the availability of pollutants
 know the different organisms whit ability to remediate contaminated sites and its mechanisms of detoxification
 Know the potential of the use of plants to remediate soil and water contaminated by organic compounds, and their mechanisms of detoxification
 know the importance of fungi in bioremediation processes, including the remediation of soils contaminated by heavy metals
- 6
- 7. Know different strategies for bioremediation.

Prerequisites

Before the course unit the learner is expected to be able to: Not applied

Course contents

Main sources of air, water and soil pollution. Importance of soil components in the pollutants availability. Soil properties related to the remediation process. Environmental monitoring of contaminated areas. Biological mechanisms of detoxification. Bioremediation by microorganisms. Phytoremediation. Tolerance and resistance to heavy metals: the importance of fungi and mycorrhizae. In situ and ex situ bioremediation technologies. Biotechnological treatment of effluents and solid wastes

Course contents (extended version)

- The environment as a continuum. Role of soil in the environment. Soil and factors of its formation
 Solid, Liquid and Gas Phases. Properties associated with each phase
 Biotic activity. Main groups of organisms in the soil and their functions.

- Biotic activity. Main groups of organisms in the soil and their functions.
 Environment pollution

 Origin of water and air pollution.
 Soil Pollution: Fertilizers, sediment, animal waste, pesticides, industrial processes.

 Physical processes that affect the fate of contaminants. Movements in soil and water.
 Chemical processes that affect the fate of contaminants.
 Soil phases; Solubility of organic and inorganic pollutants; Sorption of pollutants
 Biological processes that affect the fate of contaminants.
 Biological effects of pollutants; The biodegradation process; Microbial activity and biodegradation
 Environmental monitoring: Soil sampling techniques.
 Biological mechanisms of detoxification: Bioremediation by microorganisms

 Microbial pool atom is on the procession of pollutants
 Microbial pool atom is on the procession of pollation by microorganisms
 Microbial pool atom is on the procession of pollation by microorganisms

- 9. Biological mechanisms of detoxification: Bioremediation by microorganisms

 Microbial population used in bioremediation
 Metabolic pathways of microorganisms and their importance in bioremediation
 Factors affecting bioremediation by microorganisms
 Biostimulation, Bioaugmentation, Bioprecipitation, Biotransformation and Biosorption
 Examples and case studies of bioremediation processes

 10. Biological mechanisms of detoxification: Phytoremediation

 Definition, advantages and disadvantages
 Phytoextraction, phytostabilization, phyto- and rhizodegradation, rhizofiltration, phytovolatization
 Principles, target substances and mechanism of action of different phytoremediation processes
 Properties of plants used in different phytoremediation processes
 Examples and case studies

 11. The importance of fungi in bioremediation

 Fungal decay of wood: White-rot fungi and their enzymes in bioremediation
 Examples and case studies

 12. Tolerance and resistance to heavy metals
- Tolerance and resistance to heavy metals

 Role of mycorrhizae in heavy metal contaminated land
- Interactions between fungi and metals. physiological mechanisms
 13. In-situ and ex situ techniques of bioremediation
- 14. Biotechnology in the bioremediation
- Bioreactors
- Genetically modified microorganisms (GMOs)

Recommended reading

- Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (2016) Phytoremediation: Management of Environmental Contaminants, Volume 4. Springer
 Das S (2014) Microbial Biodegradation and Bioremediation, 1st Ed, Elsevier
 Mirsal IA (2008) Soil Pollution: Origin, Monitoring & Remediation. 2nd ed, Springer
 Weil RR, Brady NC (2016) The nature and properties of soils. 15th ed, Pearson Education

Teaching and learning methods

Theoretical classes: Lectures of theoretical contents supported by audio-visual media. Practical classes: Realization of practical laboratory experiments, problem solving regarding the presence and degradation of substances in the soil, analysis of case studies. E-learning platform will also be used as an important tool in the learning process by providing study guides for students.

Assessment methods

- Avaliação continua (Regular, Student Worker) (Final)

 Intermediate Written Test 30% (Exam of the first part of the theoretical component)
 Final Written Exam 30% (Exam of the second part of the theoretical component.)
 Reports and Guides 20% (Report about bioremediation.)
 Presentations 20% (Analysis of a scientífic article with oral presentation.)

 Avaliação Final (Regular, Student Worker) (Final, Supplementary, Special)

 Final Written Exam 100% (Exam of the theoretical and practical component whose classification must be higher than 9.5 val.)

Language of instruction

Portuguese, with additional English support for foreign students.

Electronic validation			
Marina Maria Pedrosa Meca Ferreira Castro, Paula Cristina Santos Baptista	Ana Maria Antão Geraldes	Altino Branco Choupina	Paula Cristina Azevedo Rodrigues
12-12-2022	19-12-2022	19-12-2022	19-12-2022