

Course Unit	Management of Soil Fertility			Field of study	Earth Sciences	
Master in	Agroecology			School	School of Agriculture	
Academic Year	2023/2024	Year of study	1	Level	2-1	ECTS credits 6.0
Туре	Semestral	Semester	1	Code	6348-747-1104-00-23	
Workload (hours)	162	Contact hours	T 30 TP T - Lectures; TP - Lectures a	- PL 30 T nd problem-solving; PL - Problem-	C - S - solving, project or laboratory; TC	E - OT 4 O - Fieldwork: S - Seminar: E - Placement; OT - Tutorial; O - Other

Name(s) of lecturer(s) Margarida Maria Pereira Arrobas Rodrigues

Learning outcomes and competences

- At the end of the course unit the learner is expected to be able to:
- . To know the importance of soil organisms . To know the available tools for the evaluation of soil fertility 1.
- 3. To know the dynamic of nutrients
 4. Identify the factors influencing nutrient management.
 5. Identify the factors related to environmental degradation and the strategies for mitigation negative environmental impacts

Prerequisites

Not applicable

Course contents

I- Soil Biology II- Soil and plant analysis III- Integrated fertilizers management IV- Fertilization and environmental pollution.

Course contents (extended version)

- 1. Nutrient Reservoirs in agroecosystems
- 1.1 Soil solution.
- 1, 2 Minerals.
- 1. 3 Organic matter.
 1. 4 The soil-plant system.
- 2. Nutrient Cycling.
- Carbon cvcle
- Nitrogen cycle
- Phosphorus cycle.

document is valid only if stamped in all pages

This

- Phosphorus cycle.
 3. Soil Biology

 3. 1 Soil biodiversity. Biological interactions and processes.
 3. 2 Rhizosphere. Microbial control of nutrient availability.
 3. 3 Symbiosis and mutualism. Benefits to the ecosystem.

 4. Biofertilizers

 4. Hitragen fixing according to hybrid mechanisms.

- 4. Biofertilizers
 4. 1. Nitrogen fixing organisms. Involved mechanisms.
 4. 2. Phosphorus solubilizing organisms. Mechanisms involved.
 4. 3. Other organisms with fertilizer value.
 5. Soil and plant analysis. Biological tests
 5. 1 Principles of soil and plant talsysis.
 5. 2 Techniques for soils and plant tissues. Analytical techniques. Interpretation of results.
 5. 3. Planning biological tests
 5. 4. Fertilizers recommendation. The dose concept.
 6. Integrated fertilizers management.
 6. 2 Fertilization in sustainable organic farming systems. Nutrient use efficiency .
 6. 3. Factors to consider in an integrated nutrient management plan
 7. Fertilization and environmental pollution.
 7. 1 Pollution of the atmosphere, water and soil from agricultural sources.
 7. 2 Strategies for mitigating the environmental.

Recommended reading

- Alley, M. M.; Vanlauwe, B. 2009. The role of fertilizers in integrated plant nutrient management. IFA, CIAT, TSBFI. Paris
 Bardgett, R. 2005. The biology of soil. A community and ecosystem approach. OXFORD University Press.
 Coleman, D. C.; Crossley Jr, D. A., 2004. Fundamentals of soil ecology. 2nd ed. Elsevier Inc
 Havlin, J. L., Beaton, J. D., Tisdale, S. L., & Nelson, W. L., (2014). Soil Fertility and Fertilizers: An Introduction to Nutrient Management, 7th ed. Pearson Prentice Hall.
- 5. Jones, J. Benton. 2001. Laboratory guide for conducting soil test and plant analysis. CRC Press Paul, Eldor (ed). 2007. Soil microbiology, ecology and biochemistry. 3th ed. Academic Press.

Teaching and learning methods

Presentation of theorical themes in the classroom lectures; practical classes with calculations for the preparation of nutrient balances on a farm, fertilizer use and nutrient use efficiency; laboratory classes of techniques for diagnosis of soil fertility status.

Assessment methods

- Regular Student-Final Mark (NF) = TP+EF; NF>9. 49 (Regular) (Final, Supplementary)
 Worker Student: Final Exam 100% (N>9. 49) (Student Worker) (Final, Supplementary)
 Special Dates: Final Exam 100%; NF>9. 49 (Regular, Student Worker) (Special)

Language of instruction

Portuguese

Electronic validation			
Margarida Maria Pereira Arrobas Rodrigues	Tomás de Aquino Freitas Rosa Figueiredo	Manuel Ângelo Rosa Rodrigues	Maria Sameiro Ferreira Patrício
22-01-2024	22-01-2024	22-01-2024	23-01-2024