

| Course Unit                                                                   | Reproductive Technologies     |               |   | Field of study | Animal Science        |              |     |
|-------------------------------------------------------------------------------|-------------------------------|---------------|---|----------------|-----------------------|--------------|-----|
| Master in                                                                     | Technology and Animal Science |               |   | School         | School of Agriculture |              |     |
| Academic Year                                                                 | 2023/2024                     | Year of study | 1 | Level          | 2-1                   | ECTS credits | 6.0 |
| Туре                                                                          | Semestral                     | Semester      | 1 | Code           | 5026-810-1105-00-23   |              |     |
| Workload (hours)                                                              | 162                           | Contact hours |   | - PL - T       |                       | E - OT       |     |
| Name(s) of lecturer(s) Ramiro Coruieira Valentim. Ariane Flávia do Nascimento |                               |               |   |                |                       |              |     |

## Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:
Know the main reproductive technologies used in Animal Production, their potentials and limitations. Introduction to Animal Reproduction experimentation.

### **Prerequisites**

Before the course unit the learner is expected to be able to: Fundamental knowledges of animal reproduction.

## Course contents

Sexual differentiation in mammals. Male genital tract (review). Spermatogenesis in mammals. Female genital Tract (review). Oogenesis and foliculogenesis. Spermocyte interaction. Early embryogenesis. Ovarian dynamic. Control of ovarian activity. Oocyte retrieval. Sperm technology. Sperm sexing. Artificial insemination. In vitro fertilization techniques. Nuclear transfer. Lab embryo culture. Embryo sexing. Embryo preservation. Embryo transfer. Xenotransplantation.

## Course contents (extended version)

- 1. 1. Sexual Determinism in Mammals
   Differentiation of Primordial Germ Cell
   Differentiation of Gonad

  - Differentiation of Genital Tract
- Intersexuality
   Male Genital Tract
- 2. Male German Tract
   Spermatogenesis
   Maturation of Sperm
  3. Semen Technology
   Semen Collection
   Semen Evaluation
   Fresh Semen

  - Chilled Semen Frozen Semen
- Sperm Sexing
  4. Female Genital Tract
- 4. Female Genital Tract
  Oogenesis
  Foliculogenesis
  Oocyt Maturation
  Sperm in the Female Genital Tract
  Sperm-Oocyte Interaction
  Control of Ovarian Activity
  Folicular Dynamic

- Follicular Dynamic
   Induction of Ovulation (New Procedures)
- Ovum Pick-Up 6. Fertility

- Natural Fertility
   Natural Fertility
   In Vitro Fertility (IVF)
   Other Aternatives to IVF
- 7. Embryogenesis
  - Vertebrate Embryo Organization
     Vertebrate Early Embryogenesis

  - Vertebrate Early Erri
     Congenital Disorder
     Lab Embryo Culture
     Embryo Retrieval
     Embryo Sexing

- Cloning
   Nuclear Transfer
   Oocyte Activation
   Nuclear Modification
- Transgenesis 9. Embryo Preservation
  - Embryo Criopreservation
     Frozen Embryo Survival
     Vitrification
  - Vitrification
  - Ultra-Rapid Freezing

- Ultra-Napid Freezing
   10. Embryo Transfer
   Donor-Receptor Syncronization
   Tubal or Uterine Embryo Transfer
   Fresh or Freezed Embryo Transfer
   Embryo Transfer Techniques
   11. Xenotransplantation in Animal Reproduction
   Autotransplantation

  - Autotransplantation Allotransplantation

# Recommended reading

- 1. PINKERT, C. A., 2014. Transgenic Animal Technology A laboratory handbook. 3ª Edição, Elsevier, Londres, Reino Unido, 714 pp. 2. GORDON, I., 2004. Reproductive technologies in farm animals. CABI International, Wallingford, Reino Unido, 332 pp.

# This document is valid only if stamped in all pages.

## Recommended reading

- PALMA, G. A., 2001. Biotecnologia de la reproducción. Instituto Nacional de Tecnologias Agropecuarias, Buenos Alres, Argentina, 708 pp.
   BANŞAL, K., 2011. Manual of intrauterine insemination (IUI), in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). 2ª Edição, J. B. M. P., Nova Deli, India, 121 pp.
   COHEN et al., 2008. Textbook of assisted reproductive technologies: laboratory and clinical perspectives. D. K. GARDNER, A. WEISSMAN, C. M. HOWLES, Z. SHOHAM (Eds), Informa HealthCare, EUA, 912 pp.

## Teaching and learning methods

Lectures will be support by media and multimedia resources. Practical classes will engage direct working in lab and with animals. Seminars will allow teacher and students to explore a particular topic related to ART. Non present hours will involve training in a working environment. Students are expected to work largely on their own initiative although with the close support of a tutor.

## Assessment methods

- 1. 1 Test (50%) and 1 Restrict Examination (50%) (Regular, Student Worker) (Final) 2. General Examination (100%) (Student Worker) (Final) 3. General Examination (100%) (Regular, Student Worker) (Supplementary, Special)

## Language of instruction

Portuguese

| Flectronic v | alidation |
|--------------|-----------|

| Ramiro Corujeira Valentim | Teresa Maria Montenegro Araújo A.<br>Correia | Alfredo Jorge Costa Teixeira | Ramiro Corujeira Valentim |
|---------------------------|----------------------------------------------|------------------------------|---------------------------|
| 17-01-2024                | 19-01-2024                                   | 19-01-2024                   | 21-01-2024                |