

Course Unit	Recombinant DNA Technologies			Field of study	Biology and biochemistry			
Master in	Biotechnological Engineering			School	School of Agriculture			
Academic Year	2023/2024	Year of study	1	Level	2-1	ECTS credits 5.0		
Туре	Semestral	Semester	2	Code	5010-784-1205-00-23			
Workload (hours)	135	Contact hours	T - TP	- PL - T	c - s -	E - OT - O -		
T - Lectures; TP - Lectures and problem-solving; PL - Problem-solving, project or laboratory; TC - Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other								
N () () () () () () () () () () () () ()								

Name(s) of lecturer(s) Maria João Almeida Coelho Sousa

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

Identify recombinant DNA techniques. Know genetic concepts and biological models/applications. Recognize requirements for manipulation/characteristics/potentialities/limitations of techniques/models

Prerequisites

Before the course unit the learner is expected to be able to: have knowledge of biology, genetics and biochemistrye

Course contents

Genetic manipulation: Animals, plants, microorganisms' models. Expression vectors, heterologous DNA, biological models' selection/determination. Application in different areas. Metabolic engineering: homologous recombination, gene insertion/deletion, Genome editing: Synthetic biology: Principles/techniques: Red/ET recombination, Linear-Linear Homologous Recombination, Transformation Associated Recombination, in vitro Sequence Ligation Independent Cloning and bioblocks

Course contents (extended version)

- Genetic manipulation of organisms to obtain bioproducts
 What are DNA recombination techniques and is historical perspective.
- Where we can find genetic manipulation. Some examples
 Transgenic animals in human / veterinary medicine
 Studies of diseases

- Xenotransplantation

- Transgenic plants producing a protein of pharmacological interest
 Production of hormones, vaccines or other examples
 Agronomic and commercial improvement
 Production of compounds
 Genetic manipulation of microorganisms: getting GMO producers compounds.
- 4. Molecular Biology
- 4. Molecular Biology
 5. Selection of expression vectors,
 techniques of heterologous DNA insertion
 selection and determination of different biological models
 Application and examples in: agronomic, human/veterinary health, pharmacological and environmental.

 5. Metabolic Engineering Techniques used to improve metabolism production and diversification
 homologous recombination
 gene insertion / deletion
- - gene insertion / deletion Genome editing. Application and examples in different areas

- Application and examples in diliteratives
 Synthetic biology. Principles and techniques
 Red / ET (exonuclease / polymerase) recombination
 Linear-Linear Homologous Recombination, LLHR
 Transformation Associated Recombination (TAR)
 in vitro Sequence Ligation Independent Cloning (SLIC) and bioblocks.
 Application and examples in different areas.

Recommended reading

- 1. Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery (2018) by Krishnarao Appasani (Editor), George M. Church (Foreword), Cambridge University Press; 1 edition
 2. Kurnaz I. A. (2015). Techniques in Genetic Engineering. Taylor & Francis Group
- 3. Mitra S. (2015). Genetic Engineering principles and practice. McGraw Hill Education
 4. Vogel P. and Stafforst T. (2019) Critical review on engineering deaminases for site-directed RNA editing. Current Opinion in Biotechnology, 55: 74 -80

Teaching and learning methods

Theoretical lessons with expositive methods, utilization of audio-visual resources. Laboratorial practical lessons with final presentation of reports

Assessment methods

- 1. Attendance of 3/4 of practical lessons (Regular) (Final, Supplementary, Special)
 2. pratical exame (Regular) (Final, Supplementary)
 Final Written Exam 30% (practical work with a final written exam. Minimum successful result 9, 5 marks)
 Practical Work 10% (lab. work and presentation)
 3. evaluation of pratical part (Student Worker) (Final, Supplementary, Special)
 Final Written Exam 40% (practical work with a final written exam. Minimum successful result 9, 5 marks)
 4. evaluation of theorical part (Regular) (Final, Supplementary, Special)
 Final Written Exam 50% (practical work with a final written exam. Minimum successful result 9, 5 marks)
 Development Topics 10% (work developed and presented by students in class)
 5. final exame theorical (Student Worker) (Final, Supplementary, Special)
 Final Written Exam 60% (theorical work with a final written exam. Minimum successful result 9, 5 marks)

Language of instruction

English

	Electronic validation			
Maria João Almeida Coelho Sousa Altino Bra		Altino Branco Choupina	Rui Miguel Vaz de Abreu	Paula Cristina Azevedo Rodrigues
	16-01-2024	16-01-2024	23-01-2024	25-01-2024