

Course Unit	Genetically Modified Organisms			Field of study	Biology and biochemistry	
Master in	Biotechnological Engineering			School	School of Agriculture	
Academic Year	2021/2022	Year of study	1	Level	2-1	ECTS credits 5.0
Туре	Semestral	Semester	1	Code	5010-509-1105-00-21	
Workload (hours)	135	Contact hours	T 25 TP T - Lectures; TP - Lectures a	- PL 25 T	C - S -	Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other

Name(s) of lecturer(s) Maria João Almeida Coelho Sousa

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to: Acquire skills in molecular biology and to master GMO strategies and different detections methods adapted to different materials. To know about regulation and labeling of GMO

Prerequisites

Before the course unit the learner is expected to be able to: have knowledge of biology, genetics and biochemistrye

Course contents

Definition of GMOs; Using transgenic animals, plants and microorganisms in various applications. Genetic manipulation of microorganisms: getting GMO producers compounds. Recombinant DNA techniques: a prokaryotic / eukaryotic DNA. Extraction of nucleic acids and production of plants / transgenic animals. Selection of GMO. Molecular analysis of GMO. Expression of the DNA of interest. Methods of detection / quantification of GMO. GMO Legislation: Labelling and traceability

Course contents (extended version)

- GMO definition, short historical perspective

 What are GMOs and how they came
 Where we can find OGMs. Some examples
 Canola, Maize, Rice, Tomato, Soybean; rats, mousse, and cellular lines; bacteria and yeast

 Use of transgenic animals for the production of proteins of commercial interest

 Ex: Industrial / Laboratory of Protein production of GMOs.
 Advantages of prokaryotic vs eukaryotic cell in synthesis and posttranslational modification

 Transgenic animals in human / veterinary medicine

 Studies of diseases

 - Studies of diseases Xenotransplantation

document is valid only if stamped in all pages

This

- Actional splantation
 Transgenic plants producing a protein of pharmacological interest
 Production of hormones, vaccines or other examples
 Antibodies production structure and function: Polyclonal and monoclonal
 Agronomic and commercial improvement
 Production of compounds
 Conduit monitoring the interest production of the interest production of the interest plantation.
- Production of compounds
 Genetic manipulation of microorganisms: getting GMO producers compounds.
 Molecular Biology Basic Techniques. DNA Prokaryotic versus Eukaryotic.
 Nucleic acids isolation and separation GMO by DNA detection
 Nucleic acids manipulation: Techniques and basic tools
 Recombinant DNA techniques: prokaryotic / eukaryotic DNA. obtaining transgenic plants and animals.
 Selection of GMOs. Molecular analysis of GMOs. Stable / transient incorporation of DNA.
 Detection and quantification GMOs strategies Expression of the DNA of interest.
 DNA detection: polymerase chain reaction(PCR), PCR types (PCR screening, nested, RT-PCR, multiplex)
 Electrophoresis; Hybridization probes
 Quantification methods: quantitative competitive PCR (QC-PCR), real time PCR (PCR-RT)
 Protein detection: Radioactive isotopes. Conjugates: enzyme activity and fluorochromes. immunoassays
 Biotest, Immunological test(ELISA), Lateral flow(FL), Western blot
 Alternative methods to detect and quantification of GMOs
 Chromatography and Mass spectrometry
 DNA Microarrays and microchips
 Infrared spectroscopy
 Regulation and legislation

Recommended reading

- Albert C, Laurent M. S., Norin C., Yonglong C., Louis Du Pasquier, Jana L., Nicolas P, Michael R., Daniel L. W., Odile J. B. (2008). Transgenesis producers in Xenopus. Biol cell 100 (9): 503-521.
 Brown T. (2010) Gene Cloning and DNA Analysis: An Introduction (Brown, Gene Cloning and DNA Analysis)
 Rapley R., & Harbron S. (2011). Molecular Analysis and Genome Discovery. 2th edn. John Wiley & Sons, Chichester
 Erando k., Harvey, Chistopher T. R., Barry J. H., Mikko A. (2011). Transgenic animal models of neurodegeneration based on human genetic studies. J Neural Trans. 118 (1): 27-45.
 James D. Watson, Richard M. Meyers, Amy A. Caudy (2007)Recombinant DNA: Genes and Genomes A Short Course, 3th Ed. (Watson, Recombinant DNA)ISBN-13: 978-0716728665

Teaching and learning methods

Theoretical lessons with expositive methods, utilization of audio-visual resources. Laboratorial practical lessons with final presentation of reports

Assessment methods

- Attendance of 3/4 of practical lessons (Regular) (Final, Supplementary, Special)
 pratical exame (Regular) (Final, Supplementary)

 Final Written Exam 30% (85% Assessment of practical work with a final written exam. Minimum successful result 10 marks)
 Practical Work 10% (lab. work and presentation)

 evaluation of pratical part (Student Worker) (Final, Supplementary, Special)

Assessment methods

- Final Written Exam 40% (practical work with a final written exam. Minimum successful result 9, 5 marks)
 evaluation of theorical part (Regular) (Final, Supplementary, Special)
 Final Written Exam 50% (practical work with a final written exam. Minimum successful result 9, 5 marks)
 Development Topics 10% (work developed and presented by students in class)
 final exame theorical (Student Worker) (Final, Supplementary, Special)
 Final Written Exam 60% (theorical work with a final written exam. Minimum successful result 9, 5 marks)

Language of instruction

1. English 2. Portuguese

_	Electronic validation			
ſ	Maria João Almeida Coelho Sousa	Altino Branco Choupina	Paula Cristina Azevedo Rodrigues	Maria José Miranda Arabolaza
	29-11-2021	30-11-2021	01-12-2021	02-12-2021