

Course Unit	Microbial Physiology and Genetics			Field of study	Biology and biochemistry		
Master in	Biotechnological Engineering			School	School of Agriculture		
Academic Year	2021/2022	Year of study	1	Level	2-1	ECTS credits	5.0
Туре	Semestral	Semester	1	Code	5010-509-1104-00-21		
Workload (hours)	135	Contact hours	1 20 11	- PL 25 T	C - Ssolving, project or laboratory; TC		
Name(s) of lecturer(s) Vitor Manuel Canala Ramos							

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- At the end of the course unit the learner is expected to be able to.

 1. Revise and deepen concepts on microbial physiology and genetics

 2. Acknowledge the major genetic and physiological features of major microorganisms

 3. Understand how those features affect growth and responses to biotic and abiotic factos.

 4. Recognize the combination of synthetic and systems biology as a powerful framework to study fundamental questions in microbial biology and produce chemicals of immediate practical application.

Prerequisites

Before the course unit the learner is expected to be able to: Basic knowledge of microbiology and genetics.

Course contents

Flow of information: from genome to fluxome. Metabolic functional pathways and networks. Microbial physiology and metabolism. Microbial genetics. Metabolism regulation. Microbial stress responses. Synthetic and systems biology.

Course contents (extended version)

- Introduction to microbial physiology and genetics
 Flow of information: from genome to fluxome
 Metabolic functional pathways and networks
 Microbial physiology and metabolism
 Catabolism and anabolism

- Catabolism and anabolism
 Metabolic diversity of microbes
 Microbial energetics: Major mechanisms of energy production
 Alternative mechanisms of energy production
 3. Microbial genetics: Pan-, core and variable genomes; From genes to proteins;
 Bacterial genetics
 Eugen appetites

- Bacterial genetics
 Fungal genetics
 4. Metabolism regulation
 Genetic regulation
 Metabolic regulation
 Epigenetics
 5. Microbial stress responses
 Structural, physiological and genetic changes as response to biotic and abiotic stress
 Acclimation and adaptation
 Secondary metabolism
- Secondary metabolism
 Systems biology and Synthetic biology
 Bridging the gap between systems biology and synthetic biology

Recommended reading

- Dale J, Park SF, 2010. Molecular Genetics of Bacteria, Wiley
 Kim BH, Gadd GM, 2008. Bacterial Physiology and Metabolism, Cambridge University Press
 Moat AG, Foster JW, Spector MP, Sector MP, 2002. Microbial Physiology, 4th Edition, Wiley-Liss
 Moore D, Frazer LN, 2010. Essential Fungal Genetics, Springer
 Reddy SM, Reddy SR, 2007. Microbial Physiology, Scientific Publishers Journals Dept

Teaching and learning methods

Theory will be exposed and case studies will be discussed. In silico work will be performed, and complemented by literature search and scientific communication activities, with elaboration and discussion of reports and presentations

Assessment methods

- 1. Continuous assessment (Regular, Student Worker) (Final)
 Work Discussion 60% (Elaboration and discussion of a lab report and/or of a written and oral scientific presentation)
 2. Final assessment (Regular, Student Worker) (Final)
 Final Written Exam 40% (Final written exam of theoretical contents)
 3. 2nd chance assessment (Regular, Student Worker) (Supplementary, Special)
 Development Topics 60% (Delivery of a revised version of the written assays/reports)
 Final Written Exam 40% (Final written exam of theoretical contents)

Language of instruction

- 1. English
- 2. Portuguese

Electronic validationVitor Manuel Capela RamosRui Miguel Vaz de AbreuPaula Cristina Azevedo RodriguesMaria José Miranda Arabolaza26-11-202106-12-202106-12-202106-12-2021