

Course Unit Engineering of Biotechnological Processes			Field of study	Engeneiring and related techniques			
Master in	er in Biotechnological Engineering			School	School of Agriculture		
Academic Year	2021/2022	Year of study	1	Level	2-1	ECTS credits 6.0	
Туре	Semestral	Semester	1	Code	5010-509-1103-00-21		
Workload (hours)	162	Contact hours			C - S - solving, project or laboratory; TC -	E - OT 4 O - Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other	

Name(s) of lecturer(s) António Manuel Coelho Lino Peres

Learning outcomes and competences

- At the end of the course unit the learner is expected to be able to
- Recognise the main components of a bioreactor and make their design; Determine mass transfer coefficients to evaluate the aeration system;
- Know the different operation modes and geometries of a bioreactor; Determine the residence time distributions in order to verify the existence of deviations from ideal reactor behavior;

- Identify the equations that represent the bioprocesses dynamics;
 Identify the key state variables that should be monitored during a bioprocess;
 Distinguish physical sensors and software sensors used for monitoring the main state variables of bioprocesses;
 Apply control algorithms to maintain the state variables of the process nearby pre-established reference values.

Prerequisites

Before the course unit the learner is expected to be able to:

Integral and differential calculus. Basic concepts of Reaction Engineering and Bioreactors

Course contents

Main components of a bioreactor and their design; Oxygen transfer coefficients; Operation modes and geometry types most commonly used; Selection of the most appropriate biological reactor; Residence time distributions; Equations that represent the bioprocesses dynamics; Main state variables that should be monitored during a bioprocess; Physical sensors and software sensors used for monitoring the main state variables of bioprocesses; Control algorithms.

Course contents (extended version)

- Design and construction of industrial fermenters:

- Design and construction of industrial fermenters:

 Determination of the volume, geometry and material of construction;
 Agitation and aeration systems determination of mass transfer coefficient KLa;

 Geometries and Operating Modes of Fermenters:

 Geometry-type Ex. fixed-bed and fluidized-bed reactors, bubble column reactor, air-lift reactor;
 Operating modes;

 Selection of the most appropriated biological reactor;

 Bioreactor versus chemical reactors. Key issues in bioreactor design and operation.
 Fermentation technologies

 - Fermentation technologies
- Other: Product concentration/purity Degree of substrate conversion Separation/purification processes
 Non-ideal behavior of reactors: Residence time distributions and how to predict them.

 - Characterization and diagnostics
 Characterization and diagnostics
 Residence-time distribution (RTD) function Measurement of RTD and its characteristics
 - RTD in Ideal reactors
- Instrumentation and control of biological reactors.
 Parameters: to be monitored/controlled: Temperature, Pressure, Agitator power, Flowrate, pH, DO, etc.
 - Type of sensors - Control systems (e. g. , Feedback Control Loop, automatic control loop)

Recommended reading

- Stanbury, P. F.; Whitaker, A.; Hall, S. J. 1995, "Principles of Fermentation Technology", 2nd Edition, Elsevier Science Ltd. (ISBN 0-7506-4501-6);
 Shuler, M. L.; Kargi, F. 2001, "Bioprocess Engineering: Basic Concepts", 2nd Edition, Prentice Hall (ISBN 978-0130819086).
 Bailey, J. E. and Ollis, D. F., 1987, "Biochemical Engineering Fundamentals", McGraw-Hill (ISBN 978-0070032125);
 Fonseca, M. M. e Teixeira, J. A., 2007, "Reactores Biológicos: Fundamentos e Aplicações", Lidel (ISBN 978-9727573660).
 Fogler, H. S., 2011, "Elements of Chemical Reaction Engineering", Prentice Hall (ISBN-13: 978-0-13-714612-3)

Teaching and learning methods

Theoretical classes: the theoretical concepts will be presented. Theoretical and practical classes: it is intended to solve exercises related to the topics addressed in the discipline; Laboratory classes: experiments will be undertaken in the laboratory to address the determination of yields, oxygen transfer coefficients and fermentations in batch mode.

Assessment methods

- 1. Exame (Student Worker) (Final, Supplementary, Special) Final Written Exam 100%
- Continuous evaluation (Regular, Student Worker) (Final) Final Written Exam 80%
 - Practical Work 20% (Works presented by the students.)

Language of instruction

English
 Portuguese

_	Electronic validation			
	António Manuel Coelho Lino Peres	Maria da Conceição Constantino Fernandes	Paula Cristina Azevedo Rodrigues	Elsa Cristina Dantas Ramalhosa
C	26-11-2021	05-12-2021	05-12-2021	06-12-2021