

Course Unit	Microbial association and biofertilizers			Field of study	Biology and biochemistry		
Master in	Biotechnological Engineering			School	School of Agriculture		
Academic Year	2021/2022	Year of study	1	Level	2-1	ECTS credits	5.0
Туре	Semestral	Semester	1	Code	5010-509-1101-00-21		
Workload (hours)	135	Contact hours		- PL 25 T	C - S - solving, project or laboratory; TC	E - OT	4 O -

Name(s) of lecturer(s)

Margarida Maria Pereira Arrobas Rodrigues, Paula Cristina Santos Baptista, Anabela Rodrigues Lourenço Martins

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- Understand the basic soil-plant relationships and their effect on the bioavailability of nutrients.
 Known the biology of the rhizosphere and microbial associations.
 Known the current state of knowledge concerning the rhizosphere microorganisms in the various aspects related to agronomy, genetics, physiology and biochemistry.
- Known the several groups of rhizosphere microorganisms with importance as biofertilizers.
 Apply the technologies developed for the use of rhizosphere microorganisms in sustainable agriculture

Prerequisites

Before the course unit the learner is expected to be able to: Not Applied

Course contents

Soil properties that affect the microbial activity. Cycles of nitrogen and phosphorus in the soil and role of these nutrients to plants. Rhizosphere Biology. Rhizosphere soil. Symbiotic nitrogen fixing forms in leguminous plants and in non-leguminous trees; non-symbiotic (free-living, associative or endophytic) N2- fixing forms. Mechanism of biological nitrogen fixation in leguminous plants. Phosphate solubilisation. Endo-and ectomycorrhizae. Biofertilizers. Organisms with biofertilizer value.

Course contents (extended version)

- 1. Soil-plant relations

 - Soil concept and constituents Physical, chemical and biological soil properties

- Physical, chemical and biological soil properties
 Soil quality indicators
 N and P nutrient cycles
 Importance of N in the terrestrial globe. Role in ecosystems
 Transformation of nitrogen in ecosystems
 Importance of P in the terrestrial globe. Role in ecosystems
 Phosphorus transformation in ecosystems
 Phiscophere biology
- Phosphorus transformation in ecosystems
 Rhizosphere biology

 Endorhizosphere, rhizoplane and ectorhizosphere
 Root Exudates: composition, roles and factors affecting root exudates
 Rhizosphere-inhabiting microflora
 Plant-microbe interactions in the rhizosphere (beneficial, neutral, detrimental)
 Role of rhizosphere microorganisms in the improvement of plant fitness

 Significance of bacteria in the rhizosphere

 Nitrogen Fixation: Symbiotic and non-symbiotic nitrogen fixing forms
 Phosphate solubilisation: phosphate-solubilizing microorganisms

 - Endo- and ectomycorrhizal langi Mechanisms of mycorrhizal associations: endo- and ectomycorrhizas Effect of mycorrhizal association on nutrient uptake from the soil Mycorrhiza helper bacteria (MHB)

 - 6. Biofertilizers Biofertilizer concept

 - Biolertilizer concept
 Importance of biofertilizers for sustainable agriculture models
 Organisms with biofertilizer importance
 Biofertilizers market: biotechnology and applications.
 The production of compost as a biofertilizer. Process and organisms involved.

Recommended reading

- Smith S., Read D. (2008) Mycorrhizal Symbiosis, 3rd Edition. Academic Press.
 Rai M. K. (2006) Handbook of Microbial Biofertilizers. The Hawworth Press. Inc.
 Tilak KVBR, Pal KK, Dey R (2010) Microbes For Sustainable Agriculture. International Publising House.
 Deshmukh A. M., Khoragade R. M., Dixit, P. P. (2007) Handbook of biofertilizersnand biopesticides. Oxford Book Company.
 Lichtfouse E. (2009) Genetic engineering, biofertilisation, soil quality and organic farming. Lichtfouse, E. (Ed). Springer.

Teaching and learning methods

Lectures using power point presentations. Lectures notes deposited in the e-learning resources. Laboratory classes: laboratory work and exercises.

Assessment methods

- Continuous evaluation (Regular, Student Worker) (Final)

 Intermediate Written Test 30% (The exam includes a practical component. Minimum score of 8. 0 val is required)
 Final Written Exam 30% (The exam includes a practical component. Minimum score of 8. 0 val is required)
 Work Discussion 40% (Oral presentation of review works)

 Final evaluation (Regular, Student Worker) (Final, Supplementary, Special)

 Final Written Exam 100% (The exam includes a practical component. Approved with a grade equal to or greater than 9. 5 in 20.)

Language of instruction	
English	

Electronic validation			
Margarida Maria Pereira Arrobas Rodrigues, Paula Cristina Santos Baptista	Anabela Rodrigues Lourenço Martins	Paula Cristina Azevedo Rodrigues	Maria José Miranda Arabolaza
01-12-2021	01-02-2022	02-02-2022	02-02-2022