

Course Unit	Water and Wastewater Treatment Methods			Field of study	Environmental Protection Technology		
Master in	Environmental Technology			School	School of Agriculture		
Academic Year	2022/2023	Year of study	1	Level	2-1	ECTS credits 6.0	
Туре	Semestral	Semester	1	Code	1076-409-1203-00-22		
Workload (hours)	162	Contact hours		- PL 40 T		E - OT 20 O - Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other	

Manuel Joaquim Sabença Feliciano Name(s) of lecturer(s)

Learning outcomes and competences

At the end of the course unit the learner is expected to be able to:

- Identify the major unit operations and processes of water and wastewater treatment plants Evaluate the performance of water and wastewater treatment plants
- Cooperate in the planning and design of water and wastewater treatment systems
 Develop applied research in the field of water and wastewater treatment

Prerequisites

Before the course unit the learner is expected to be able to:

- have a good knowledge of fundamental concepts of engineering sciences
 have a good knowledge on the basic operation principles of chemical and biological reactors

Course contents

General characterization of water and wastewater; 2. Water and wastewater treatment systems; 3. Physicochemical processes of water and wastewater treatment. 4. Biological processes of wastewater treatment; 5. Sludge treatment processes;

Course contents (extended version)

1. Water and wastewater characteristics

- Physical characteristics
- Chemical characteristics
- **Biological characteristics**
- Sampling and analytical methods
 Water and wastewater treatment systems
 Constitution and treatment goals of WTP
 Constitution and treatment goals of WWTP
 Current status and future trends
- Current status and future trends
 Physicochemical processes of water and wastewater treatment
 Preliminar operations: screening, tamisation and coarse solids reduction systems
 Flow Equalization and homogenization
 Coagulation and flocculation
 Sedimentation and Flotation
 water softening and water stabilization
 Ion exchange and carbon adsorption
 Filtration and membrane separation technologies
 Disinfection

document is valid only if stamped in all pages

This

- Intration and memorane separation technic Disinfection
 4. Biological systems of wastewater treatment Activated sludge treatment systems
 trickling filters systems
 Rotating Biological Contactor
 Lagon systems

- Lagoon systems Moving Bed Reactors Membrane reactors

- Constructed wetland systems
 Sludge treatment processes
 Major characteristics and sludge disposal
 - Sludge thickening
 Aerobic and anaerobic sludge stabilization
 Sludge dewatering

Recommended reading

- Chaubey, M. 2021. Wastewater Treatment Technologies: Design Considerations. Challenges of Water Management. Wiley Blackwell.
 Cheremisinoff, N. P. 2002. Handbook of water and wastewater treatment technologies. Butterworth-Heinemann, USA.
 Kiely G. 1999 . Ingeniería Ambiental. Fundamentos, entornos, tecnología y sistemas de gestión. McGraw-Hill/Interamericana de España, Madrid, 1331 p.
 Metcalf & Eddy 2013. Wastewater engineering. Treatment and reuse. 5th edition, McGrow-Hill, New York, 2048 p.
 Monte, H. M.; Santos, M. T. L.; BARREIROS, A. M. 2018. Tratamento de águas residuais: processos de tratamento biológico. ERSAR; ISEL. Lisboa

Teaching and learning methods

Conventional lectures with oral presentation of subjects. Labs based upon development of pratical exercises. Field trips to water and wastewater treatment plants are also included, in order to help in the assimilation of the theoretical concepts. In tutorial classes, students receive further assistance in ongoing research activities.

Assessment methods

Alternative 1 - (Regular, Student Worker) (Final, Supplementary, Special)
 Final Written Exam - 70% (Every student shall have to attend at least 75% of the classes)
 Practical Work - 30%

Language of instruction						
Portuguese, with additional English support for foreign students.						
Electronic validation						

Manuel Joaquim Sabença Feliciano	Amilcar António Teiga Teixeira	Manuel Joaquim Sabença Feliciano	Maria Sameiro Ferreira Patrício
16-12-2022	16-12-2022	19-12-2022	19-12-2022