

Course Unit	Circuits I			Field of study	Physics	
Bachelor in	Electrical and Computers Engineering			School	School of Technology and Management	
Academic Year	2023/2024	Year of study	1	Level	1-1	ECTS credits 6.0
Туре	Semestral	Semester	1	Code	9112-742-1103-00-23	
Workload (hours)	162	Contact hours	T 15 TP T - Lectures; TP - Lectures a	15 PL 30 T nd problem-solving; PL - Problem-	C - S - solving, project or laboratory; TC	Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other

Name(s) of lecturer(s)

Fernando Jorge Coutinho Monteiro, Felipe Lage Teixeira, Guido Szekir Berger

Learning outcomes and competences

- At the end of the course unit the learner is expected to be able to:
- Know the main concepts and laws of electrical circuits; Understand theorems for electrical and electronics circuits' analysis;
- Select methods to analyze complex electrical circuits;
 Characterize temporal behaviour of circuits based on capacitors and inductors;

Prerequisites

- Before the course unit the learner is expected to be able to:
- Know trigonometry and complex numbers.
 Know how to solve linear equations systems.
- 3. Know differential and integral calculus

Course contents

Variables of electrical circuits: Current, voltage, power and energy; Resistance; Conductance; Resistance variation with temperature; Association of resistors; Analysis of resistive circuits; Superposition principle, Thevenin and Norton Theorems. Power and energy; Energy storage elements: capacitors and coils; Series and parallels of coils and capacitors. Laboratory instrumentation: voltimeter, amperimeter, ohmimeter, oscilloscope, function generator, power sources.

Course contents (extended version)

- 1. Basic methods of Analysis
 - Introduction to the Electric Current conduction phenomenon; Electrical units; Joule's law.
 Electric Circuits' Laws: Ohm's Law; Voltage and Current Kirchhoff's Laws.
 Association of Resistances in Series and parallel; Y-D Transformation.

 - Voltage and Current Dividers.

- Voltage and Current Dividers.
 Voltage and Current Sources
 Ideal and real voltage and current sources.
 Equivalence among real voltage and current sources.
 General methods of Analysis of electric circuits
 Method of the Current in Branches; Method of the Independent Mesh; Method of the Analysis of Nodes.
 Superposition theorem, Thevenin and Norton theorems; Dualities.
 Analysis of Circuits with Energy Storage Elements
 Energy Storage Elements: Capacitors and Inductors. Energy stored in capacitors and Inductors.
 Association of capacitors and Inductors; Real Capacitors and Inductors.
 Transient analysis of Circuits: 1st Order (RL and RC) and 2nd Order (RLC).

Recommended reading

- Fernando Monteiro, "Apontamentos de Circuitos I", IPB, 2022.
 R. L. Boylestad, "Introductory Circuit Analysis", Prentice Hall Internacional Editions, 9th Edition, 2000
 L. Bessonov, "Electricidade Aplicada para Engenheiros", 2ª Edição, Lopes da Silva Editora, 1977
 W. H. Hayt, J. Kemmerly, "Engineering Circuit Analysis", McGraw-Hill International Editions, 5th Ed., 1993
 V. Meireles, "Circuitos Eléctricos", 3ª Edição Revista, Edições LIDEL, 2005

Teaching and learning methods

Theoretical classes: presentation of the course contents supported on illustrative examples. Practical classes: Problem-solving and execution of laboratorial works.

Assessment methods

- Alternative 1 (Regular, Student Worker) (Final, Supplementary, Special)

 Final Written Exam 60%
 Laboratory Work 40%

 Alternative 2 (Student Worker) (Special)

 Final Written Exam 100%

Language of instruction

Portuguese, with additional English support for foreign students

Electronic validation			
Fernando Jorge Coutinho Monteiro	José Luís Sousa de Magalhaes Lima	Orlando Manuel de Castro Ferreira Soares	José Carlos Rufino Amaro
01-10-2023	11-10-2023	14-10-2023	31-10-2023