

Course Unit	Chemical Engineering Process Laboratory			Field of study	Chemical Enginnering Processes	
Master in	Chemical Engineering			School	School of Technology and Management	
Academic Year	2023/2024	Year of study	1	Level	2-1	ECTS credits 6.0
Туре	Semestral	Semester	2	Code	6362-756-1203-00-23	
Workload (hours) 162 Contact hours T - TP - PL 60 TC - S - E - OT - O - T - Lectures; TP - Lectures and problem-solving; PL - Problem-solving, project or laboratory; TC - Fieldwork; S - Seminar; E - Placement; OT - Tutorial; O - Other						

Name(s) of lecturer(s) José António Correia Silva

Learning outcomes and competences

- At the end of the course unit the learner is expected to be able to:

 1. Apply the conservation principles of mass and energy and the concept of modelling in the analysis of experiments

 2. Develop experimental work to analyze separation processes

- 3. Understand through experimentation process dynamics and control
 4. Develop experimental work to analyze chemical reactors
 5. Develop proficient oral presentation skills through group project presentations

Prerequisites

Before the course unit the learner is expected to be able to: Dominate basic concepts about chemical reactors, separation processes and system dynamics

Course contents

Process control and dynamics. Chemical reaction engineering. Advanced separation processes: membranes and adsorption

Course contents (extended version)

- Process dynamics and control: ON-OFF control; feedback control. Transient behavior of a surge tank
 Chemical reaction engineering. Tubular reactor. Stirred tanks in series
 Advanced separation processes: reverse osmosis in membranes; fixed bed adsorption

Recommended reading

- Octave Levenspiel, Chemical Reaction Engineering, 3rd Edition, John Wiley & Sons, 1998.
 D. M. Ruthven, Principles of adsorption and adsorption processes, John Wiley & Sons, 1984.
 D. E. Seborg, T. F. Edgar e D. A. Mellichamp, Process Dynamics and Control, John Wiley & Sons, 1989.

Teaching and learning methods

Laboratory classes (60 hours): Execution of experimental work Homework (92 hours): Plan of experimental activity, technical reports and oral presentations

Assessment methods

- Alternative 1 (Regular, Student Worker) (Final)
 Laboratory Work 40%
 Reports and Guides 20%
 Presentations 40%
 Alternative 2 (Regular, Student Worker) (Final, Supplementary, Special)
 Laboratory Work 40%
 Pengts and Guides 20%

 - Reports and Guides 20% Final Written Exam 40%

Language of instruction

English

Electronic validation

2.001.01.10 / 4.11441.01.		/		
José António Correia Silva	Hélder Teixeira Gomes	Simão Pedro de Almeida Pinho	José Carlos Rufino Amaro	
12-02-2024	13-03-2024	13-03-2024	16-03-2024	